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ABSTRACT
“Serverless” cloud services, such as AWS lambdas, are one of the
fastest growing segments of the cloud services market. These ser-
vices are popular in part due to their light-weight nature and flexi-
bility in scheduling and cost, however the security issues associated
with serverless computing are not well understood. In this work,
we explore the feasibility of constructing a practical covert channel
from lambdas. We establish that a fast co-residence detection for
lambdas is key to enabling such a covert channel, and proceed to
develop a reliable and scalable co-residence detector based on the
memory bus hardware. Our technique enables dynamic discovery
for co-resident lambdas and is incredibly fast, executing in a matter
of seconds. We evaluate our approach for correctness and scalabil-
ity, and use it to establish covert channels and perform data transfer
on AWS lambdas. We show that we can establish hundreds of indi-
vidual covert channels for every 1000 lambdas deployed, and each
of those channels can send data at a rate of 2̃00 bits per second, thus
demonstrating that covert communication via lambdas is entirely
feasible.
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1 INTRODUCTION
Over the last decade, organizations have increasingly offloaded
their data processing and storage needs to third-party “cloud” plat-
forms. However, the economics of cloud platforms is predicated on
high levels of statistical multiplexing and thus co-tenancy — the
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contemporaneous execution of computation from disparate cus-
tomers on the same physical hardware – is the norm. The risks
associated with this arrangement, both data leakage and interfer-
ence, are well-appreciated and have generated both a vast research
literature (starting with Ristenpart et al. [19]) as well as wide-array
of technical isolation countermeasures employed by cloud platform
providers. Most of this work has focused squarely on the risks of
information channels between long-lived, heavy-weight virtual
machines (“instances” in Amazon parlance) used to virtualize the
traditional notion of dedicated network-connected servers.

However, over the last six years, most of the largest cloud
providers have introduced a new “serverless” service modality
that executes short-lived, lightweight computations on demand
(e.g., Amazon’s Lambda [14], Google’s Cloud Functions [10] and
Microsoft’s Azure Functions [5]). These services, by design, use
lighter-weight tenant isolation mechanisms (so-called “micro-VMs”
or containers) as well as a fixed system environment to provide
low-latency startup and a reduced memory footprint. In return,
serverless systems can support even higher levels of statistical
multiplexing and thus can offer significant cost savings to cus-
tomers whose needs are able to match this model (e.g., event-driven
computations with embedded state). However, the security issues
associated with serverless computing are far less well understood
than their heavier weight brethren. While the transient and dy-
namic nature of serverless computing pose inherent challenges
for attackers, their low-cost and light-weight isolation potentially
present new points of purchase as well.

In our work, we explore these issues through the lens of a singu-
lar question: can a practical covert channel be constructed entirely
from existing “serverless” cloud services1?

Covert channels provide a means of transmitting data that by-
passes traditional monitoring or auditing – typically by encoding
data into some resource access that is not normally deemed a com-
munications medium but is externally visible. In virtualized envi-
ronments, covert channels typically involve some shared resource
(e.g. a cache) for which contention provides a means of signaling. In
the serverless context, the threat model is that an adversary is able
to launch, or inject code into, lambdas from inside a target organi-
zation and wishes to communicate information to parties outside
the organization (i.e., to their own lambdas) without offering any
clear evidence of such (e.g., opening network connections, etc.)

However, the serverless context presents a number of unique
challenges for implementing covert channels. First, the physical
location of a lambda is unknown, as the scheduling and placement
of lambdas is managed by the cloud service provider. Thus, there

1We will use the term lambdas to stand for all such services going forward.
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is no way to arrange that a sending lambda and a receiving
lambda will execute on the same physical hardware, let alone at
the same time. Second, given this reality, any serverless covert
communications protocol must repeatedly launch lambdas in
the hope that at least two sending and receiving lambdas are
co-resident on the same hardware at the same time. The extent
to which this is practicable, on existing cloud platforms with
reasonable cost, is unknown. Third, it is not enough to simply
achieve co-residency, but any lambdas lucky enough to be
co-resident must be able to quickly determine this fact, and then
use the balance of their limited lifetimes to effect communications.
Finally, since rendezvous in a serverless system is inherently
statistical, any such protocol must anticipate the potential for
interference (i.e., when multiple sending lambdas happen to be
co-resident with one or more receiving lambdas).

In this paper we address each of these issues in turn and
demonstrate the feasibility of covert communication entirely in the
context of the Amazon’s serverless cloud platform. In particular,
we make three key technical contributions:

• Fast co-residence detection. Leveraging the memory-bus
contention work of Wu et. al [26], we develop and imple-
ment a lambda co-residence detector that is generic, reliable,
scalable and, most importantly, fast, executing in a matter
of seconds for thousands of concurrent lambdas.

• Dynamic neighbor discovery. We present a novel
protocol in which co-resident lambdas communicate their
IDs using a hardware-based covert channel in order to
identify one another. The protocol also allows a sender or
receiver lambda to enumerate all its co-resident neighbors, a
requirement to avoid unwanted communication interference
while performing covert communication.

• Covert channel demonstrationWe use our co-residence
detector to establish lambda covert channels on AWS.
We then perform a study on the feasibility of covert
communication by 1) estimating the capacity of each
channel and 2) measuring co-residence density – that is, for
a given number of lambdas launched at the same point in
time, how many would become co-resident? We conduct
these measurements across a range of Amazon data centers
to establish that there is ample lambda co-residence and
that covert communication is practicable.

Our implementation is publicly available at https://github.com/
anilkyelam/columbus.

2 BACKGROUND
We begin with a brief background on related topics.

2.1 Lambdas/Serverless Functions
We focus on serverless functions in this paper, as they are one of
the fastest-growing cloud services and are less well-studied from a
security standpoint. Offered as lambdas on AWS [14], and as cloud

functions on GCP [10] and Azure [5], these functions are of interest
because they do not require the developer to provision, maintain,
or administer servers. In addition to this low maintenance, lambdas
are much more cost-efficient than virtual machines (VMs) as they
allow more efficient packing of functions on servers. Moreover,
lambdas execute as much smaller units and are more ephemeral
than virtual machines. For example, on AWS, the memory of
lambdas is capped at 3 GB, with a maximum execution limit of 15
minutes. As with other cloud services, the user has no control over
the physical location of the server(s) on which their lambdas are
spawned.

While lambdas are limited in the computations they can execute
(typically written in high-level languages like Python, C#, etc),
they are conversely incredibly lightweight and can be initiated
and deleted in a very short amount of time. Cloud providers
run lambdas in dedicated containers with limited resources (e.g.,
Firecracker [1]), which are usually cached and re-used for future
lambdas to mitigate cold-start latencies [2]. The ephemeral nature
of serverless functions and their limited flexibility increases
the difficulty in detecting co-residency, as we will discuss later.
While previous studies that profiled lambdas [24] focused on the
performance aspects like cold start latencies, function instance
lifetime, and CPU usage across various clouds, the security aspects
remain relatively understudied.

2.2 Covert Channels in the Cloud
In our attempt to shed light on the security aspects of lambdas, we
focus particularly on the feasibility of establishing a reliable covert
channel in the cloud using lambdas. Covert channels enable a
means of transmitting information between entities that bypasses
traditional monitoring or auditing. Typically, this is achieved by
communicating data across unintended channels such as signaling
bits by causing contention on shared hardware media on the
server [16, 18, 25–27]. Past work has demonstrated covert channels
in virtualized environments like the clouds using various hardware
such as caches [19, 27], memory bus [26], and even processor
temperature [16].

Of particular interest to this work is the covert channel based on
memory bus hardware introduced by Wu et al. [26]. In x86 systems,
atomic memory instructions designed to facilitate multi-processor
synchronization are supported by cache coherence protocols as
long as the operands remain within a cache line (generally the
case as language compilers make sure that operands are aligned).
However, if the operand is spread across two cache lines (referred
to as "exotic" memory operations), x86 hardware achieves atomicity
by locking the memory bus to prevent any other memory access
operations until the current operation finishes. This results in
significantly higher latencies for such locking operations compared
to traditional memory accesses. As a result, a few consecutive
locking operations could cause contention on the memory bus that
could be exploited for covert communication. Wu et al. achieved a
data rate of 700 bits per second (bps) on the memory bus channel
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in an ideal laboratory setup.

Achieving such ideal performance, however, is generally not pos-
sible in cloud environments. Cloud platforms employ virtualization
to enable statistical multiplexing and as such, communication on
the covert channel may be affected by: 1) scheduler interruptions
as the sender or the receiver may only get intermittent access to
the channel and 2) interference from other non-participating work-
loads. This may result in errors in the transmitted data and require
additional mechanisms like error correction [26] to ensure reliable
communication.

2.3 Co-residence Detection
In the cloud context, enabling communication over traditional
covert channels comes with an additional challenge of placing
sender and receiver on the same machine. However, such co-
residency information is hidden, even if the entities belong to the
same tenant. Past research has used various strategies to achieve
co-residency in order to demonstrate various covert channel attacks
in the cloud. Typically, the attacker launches a large number of
cloud instances (VMs, Lambdas, etc.), following a certain launch
pattern, and employs a co-residence detection mechanism for de-
tecting if any pair of those instances are running on the same
machine. Traditionally, such detection has been based on software
runtime information that two instances running on the same server
might share, like public/internal IP addresses [19], files in procfs
or other environment variables [24, 26], and other such logical
side-channels [21, 29].

As virtualization platforms moved towards stronger isolation
between instances (e.g. AWS’ Firecracker VM [1]), these logical
covert-channels have become less effective or infeasible. Further-
more, some of these channels were only effective on container-
based platforms that shared the underlying OS image and were
thus less suitable for hypervisor-based platforms. This prompted a
move towards using hardware-based covert channels, such as the
ones discussed in section 2.2, which can bypass software isolation
and are thus usually harder to fix. For example, Varadarajan et
al. [22] use the memory bus covert channel to detect co-residency
for EC2 instances. However, their approach does not extend well
to lambdas as it is neither fast nor scalable.

3 MOTIVATION
In this section, we discuss our covert channel attack scenario, the
challenges lambdas would pose in enabling such an attack and, the
need for a co-residence detector for lambdas.

Threat Model Covert channel attacks generally require an “in-
sider” who sends data over a covert medium for exfiltration. We
assume that the attacker uses social engineering techniques or some
other means (beyond the scope of this work) to introduce such in-
siders in the victim system. In the case of lambdas, this insider code
could be in the lambda itself or in a system that controls lambda
deployments for an organization and already possesses the sensi-
tive data that needs to be exfiltrated. We further assume that the
attacker has the knowledge of the cloud region where the victim is
operating and can deploy lambdas under its own account.

In a typical attack, the attacker launches a set of lambdas (re-
ceivers) in the cloud region where the victim lambdas (senders)
are expected to operate. The attacker and (compromised) victim
lambdas can then work together2 to exchange the data over a covert
channel, like the memory bus hardware discussed earlier. However,
as mentioned earlier, there are few unique challenges before we
can use a traditional covert channel in the cloud. We need to: 1) co-
locate the sender and receiver on the same server (via co-residence
detection) and 2) handle interruptions on such a channel, such as
noisy neighbors neighbors or scheduling.

While these challenges have been handled for other cloud plat-
forms like VMs [21, 26], lambdas are inherently different in that
they have very short lifetimes. A covert channel between two co-
resident lambdas will not last very long. However, while lambdas
are not persistent, it is trivial and cheap to launch lambdas in large
numbers at once and establish multiple co-residence points to allow
for more covert communication. Additionally, lambdas are also
more densely packed than VMs, exacerbating the noisy neighbor
problem.

The ephemeral, numerous, and dense nature of lambdas require
a fast, scalable, and reliable co-residence detector. This detector
should also allow the attacker identify all the servers with two or
more co-resident lambdas and establish a covert channel on each
such server. Moreover, the detector should precisely identify how
many and which lambdas are co-resident, allowing the attacker
to pick any two lambdas on a given machine, and set up a covert
channel between these two lambdas without interference from the
rest.

4 CO-RESIDENCE DETECTOR FOR LAMBDAS
In this section, we describe the necessary requirements for a lambda-
based co-residence detector, how these requirements have driven
our design choices, the detailed implementation that we have used
to overcome the unique challenges in this setting and an evaluation
of its effectiveness.

4.1 Specification
Given a set of cloud instances (VMs, containers, functions, etc)
deployed to a public cloud, a co-residence detection mechanism
should identify, for each pair of instances in the set, whether the pair
is running on the same physical server at some point. Paraphrasing
Varadarajan et al. [22], for any such mechanism to be useful across
a wide range of launch strategies, it should have the following
properties:
• Generic The technique should be applicable across a wide
range of server architectures and software runtimes. In prac-
tice, the technique would work across most third-party cloud
platforms and even among different platforms within a cloud.
• Reliable The technique should have a reasonable detection
success with minimal false negatives (co-resident instances
not detected) and even less false positives (non-co-resident
instances categorized as co-resident).
• Scalable A launch strategy may require hundreds or even
thousands of instances to be deployed, and must scale such

2We do not explicitly differentiate attack and victim lambdas hereafter as they are all
assumed to be in the control of the attacker
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that the technique will detect all co-resident pairs at a rea-
sonable cost.

We add another property to that list which is relevant to lambdas:
• Fast The technique should be fast, preferably finishing in
the order of seconds. As lambdas are ephemeral (with some
clouds restricting their execution times to as low as aminute),
the technique should leave ample time for other activities
that make use of the resulting co-resident information.

4.2 Design
4.2.1 Generality. As mentioned in section 2.3, co-residence de-
tection was previously accomplished using unique software iden-
tifiers that revealed the underlying server to the tenants. Such
software identifiers present the fastest and perhaps most reliable
way (in terms of ground truth) for co-residence detection. In our
scenario, each lambda could quickly “read” the identifier and com-
municate this information with all other lambdas (through the
network or shared remote storage) to identify the co-resident lamb-
das. However, such information can be easily obfuscated by plat-
form providers; for example, currently there is no such identifier
available for AWS lambdas. So, we turn to hardware-based covert
channels that are, by definition, also accessible to all the tenants on
a single server. Hardware-based covert channels are also generally
more difficult to remove, as well as more pervasive, given that the
hardware is more homogeneous across computing platforms than
software.

4.2.2 Challenge with Covert Channels. Since covert channels can
send information, one could potentially use them to communi-
cate identity information (such as unique IDs) between co-resident
lambdas to detect co-residence. However, covert channels gener-
ally presume that the sender and the receiver are already known
and that there will be only two parties performing communication.
Whenmultiple parties share a channel, we need stricter control over
the channel, to arbitrate access to the channel and handle collisions.
However, covert channels are often binary channels (i.e., parties
can either only send or receive a bit at a time, not both) with no ca-
pability for collision detection. Covert channels also typically have
very limited bandwidth (often only tens of bits per second) that
channel arbitration can be complex enough and present significant
overhead to be considered infeasible.

4.2.3 Efficient ID Broadcasting. For co-residence detection, lamb-
das only need to communicate their IDs with one another. As such,
we do not require the channel be general or expressive, only that it
can communicate just these IDs as efficiently as possible. In keep-
ing with the restrictions on a covert channel, we assume that any
lambda with access to the channel can choose to either send or
listen for a 1-bit, and if at least one lambda chooses to send a bit,
all the listeners would record the 1-bit. Additionally, we assume
that lambdas can synchronize themselves between sending or lis-
tening a bit in each time slot. We show both these assumptions to
be reasonable in section 4.3. As such, we propose a communication
protocol that efficiently broadcasts just these IDs (i.e., bit-strings of
fixed-length, sayN ) within the above constraints.

We divide the total running time of the protocol into phases,
with each phase executing for an interval of N bit-slots. Each phase

Algorithm 1 ID Broadcast Protocol
1: sync_point ← Start time for all instances
2: ID ← Instance ID
3: N ← Number of bits in ID
4: advertisinд ← TRUE
5: instances ← {}
6: WAIT_T ILL(sync_point )
7: while id_read do
8: slots ← 0
9: id_read ← 0
10: participatinд ← advertisinд
11: while slots < N do
12: bit ← slotsth most significant bit of ID
13: if participatinд and bit then
14: WRITE_BIT () (Alg. 2)
15: bit_read ← 1
16: else
17: bit_read ← READ_BIT () (Alg. 3)
18: if bit_read then
19: participatinд ← FALSE
20: end if
21: end if
22: id_read ← 2 ∗ id_read + bit_read
23: slots ← slots + 1
24: end while
25: if id_read = ID then
26: advertisinд ← FALSE
27: end if
28: instances ← instances ∪ {id_read }
29: end while
30: return instances

has a set of participating lambdas, which in the first phase would
be all of the lambdas. In each bit-slot K of N slots in a phase, every
participating lambda broadcasts a bit if the Kth bit of its bit-string
(ID) is 1, otherwise it listens. If the listening lambda senses a 1-bit
while listening, it stops participating, and listens for the rest of
the phase. Thus, only the lambdas with the highest ID among the
initial set of participating lambdas continues broadcasting until
the end of the protocol, effectively advertising its full ID to the
rest of the (now listening) lambdas. In the next phase, the lambda
with the previously highest ID now only listens, allowing the next
highest lambda to advertise its ID, and so on. If the IDs are unique,
there will always be only one lambda that broadcasts in every
phase. The protocol ends after x phases (where x is the number of
co-resident lambdas), when none of the lambdas broadcast for N
consecutive bit-slots. The pseudo-code of the protocol is provided
in Algorithm 1.

Time complexity Assuming N total deployed lambdas to the
cloud, the bit-string needs to be log2 N bits to uniquely identify
each lambda. If a maximum K of those lambdas are launched on any
single server, the protocol executes for K phases of log2 N bit-slots
each, taking (K + 1) ∗ log2 N bit-slots for the whole operation. In
fact, it is not necessary to run the protocol for all K phases. After
the first phase, all the co-resident lambdas would know one of their
neighbors (as each phase reveals the ID of the biggest participating
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Figure 1: The plots show the latencies of atomic memory operations performed on an 8B memory region as we slide from
one cache line across the boundary into another on AWS, Azure, and Google (GCP) respectively. The latencies are orders of
magnitude higherwhen the 8B region falls across the two cache lines (offsets 0-7B), demonstrating the presence of thememory
bus covert channel on all these cloud providers.

lambda to others). If we use IDs that are globally unique, all the
co-resident lambdas will see the same ID. The lambdas can then
exchange these IDs offline (e.g., through the network) to infer the
rest of their neighbors. This simplification removes the dependency
on number of co-resident lambdas (K) and decreases the complexity
toO (log2 N ), providing a sub-linear co-residence detection mecha-
nism.

4.3 Implementation
Using the design considerations just discussed, we implemented
the above protocol using a covert channel based on memory bus
hardware. We discuss how we used the hardware to send and listen
for bits in order to meet the requirements for the protocol.

4.3.1 Memory Bus Covert Channel. We utilize the memory bus
covert channel described in section 2.2 as it exploits a fundamental
hardware vulnerability that is present across all generations of x86
hardware. Historically, multiple public cloud services have been
vulnerable to this channel [21, 32], and we find that they are still
vulnerable today. To demonstrate the presence of the vulnerability,
we measure the latency of atomic operations on an 8B memory
region as we slide the region from one cacheline into another across
the cacheline boundary. We perform this experiment on three major
cloud platforms (AWS, Google and Microsoft Azure) and show the
latencies observed in Figure 1. From the figure, we can see that
all three cloud platforms still exhibit a significant difference in
latencies for the “exotic” memory locking operations where the
memory region falls across cacheline boundary. When compared
to regular memory accesses, it demonstrates the presence of this
covert channel on all of them. Moreover, we were able to execute
these experiments on serverless function instances. Since lambdas
have runtimes that are generally restricted to high-level languages
(that prevent the pointer arithmetic required to perform these exotic
operations), we used the unsafe environments on these clouds —
C++ on AWS, Unsafe Go on GCP, Unsafe C# On Azure. This shows
the applicability of using the covert channel across different kinds
of cloud instances, fulfilling the generic aspect of our mechanism.

4.3.2 Sending a bit. Senders and receivers can accurately commu-
nicate 0-bits and 1-bits by causing contention on the memory bus.
To communicate a 1-bit, the sender instance causes contention on

Algorithm 2 Writing 1-bit from the sender
now ← time .now ()
end ← now + samplinд_duration
address ← cache_line_boundary − 2
while now < end do

__ATOMIC_FETCH_ADD (address )
now ← time .now ()

end while

the memory bus by locking it using the special memory locking op-
erations (discussed in section 2.2). The pseudo-code for the sender
instance is shown in Algorithm 2.

4.3.3 Listening for a bit. The receiver can simply sample the mem-
ory bus for contention, inferring whether the communication is a
1-bit (when contention is observed) or a 0-bit (when contention is
not observed). However, there are two ways to listen for contention.
When the memory bus is locked, any non-cached memory accesses
will queue and therefore see higher latencies. The receiver can then
continually make un-cached memory accesses (referred to as the
memory probing receiver in previous literature [22]) and observe a
spike in their latencies to detect contention. On the other hand, the
receiver can also detect memory bus contention by using the same
memory locking operations as the sender (referred to as memory
locking receiver) to probe the memory bus. Since only one processor
core can lock the memory bus at a given time, any other concurrent
locking operation will see higher latency.

Mechanism Of these two methods, we decide to use the mem-
ory locking receiver for our experiments. Since memory probing
involves regular (un-cached) memory accesses, it can be performed
on multiple receivers concurrently without affecting each other
(due to the high memory bandwidth), which prevents noise in
measurements. This is an important attribute, as memory locking
receivers must contend with this noise. However, bypassing multi-
levels of caches in today’s servers to perform memory accesses
with reliable consistency is a challenging task. Even with a reliable
cache-bypassing technique, the variety of cache architectures and
sizes that we encounter on different clouds would make tuning
the technique to suit these architectures an arduous task, while
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Figure 2: This figure presents the error rate (as a fraction
of 1000 lambdas deployed) for different lambda sizes in the
AWS Middle-East region.

reducing the applicability of our overall co-residence detection
mechanism.

Sampling frequency Another challenge for our protocol is
determining an adequate sampling frequency. Ideally, a memory
locking receiver would loop locking operations and determine con-
tention in real-time by identifying a decrease in the moving av-
erage of the number of operations. Note that, in this case, there
is essentially no difference between the sender and receiver (i.e.,
both continually issue locking operations) except that the receiver
is taking measurements. This is adequate when there is a single
sender and receiver [22], but when there are multiple receivers, the
mere act of sensing the channel by one receiver causes contention
and the other receivers cannot differentiate between a silent (0-bit)
and a locking (1-bit) sender. To avoid this, we space the sampling of
memory bus such that no two receivers can sample the bus at the
same time, with high probability. We achieve this by using large
intervals between successive samples and a poisson-sampling to
prevent time-locking of receivers. We determined that a millisecond
poisson gap between samples is reasonable to minimize noise due
to collisions in the receiver sampling, assuming tens of co-resident
receivers and a few microseconds sampling time.

Sample Size In addition to adequate sampling frequency, we
must also determine sample size. A receiver can confirm contention
with high confidence with only a few samples, assuming that the
sender is actively causing contention on the memory bus and the
receiver is constantly sampling the memory bus throughout the
sampling duration. However the time-sharing of processors pro-
duces difficulties. The sender is not continually causing contention,
and neither is the receiver sensing it, as they are context-switched
by the scheduler, which runs other processes. Assuming that the
sender and receiver are running on different cores, the amount of
time they are actively communicating depends on the proportion
of time they are allocated on each core and how they are scheduled.

To illustrate such behavior, we run a sender-receiver pair using
lambdas [14] of various sizes on AWS, and compare the distribution
of latencies seen by the receiver during the contention in each
case. Figure 3 shows that the much smaller 128 MB lambdas (which
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Figure 3: We present a CDF of latencies observed by 128
MB, 1 GB and 3 GB Lambdas during contention. The 128
MB lambda pair sees less contention due to more context
switching, whereas the 1 GB and 3 GB lambdas see progres-
sively more contention compared to the baseline, which we
attribute to their relative stability on the underlying physi-
cal cores.

probably share a CPU core and are thus context-switched) exhibit
less active communication than the bigger 3 GB lambdas (which
may run on dedicated cores). This means that smaller instances
that tend to share processor cores with many other instances may
need to pause for more time and collect more samples to make up
for lost communication due to scheduling.

Overcoming noise Along with context switching and sensing
noise, there are other imperfections in the measurement appara-
tus that may cause noise. For example, we use the difference in
readings from the timestamp counter of the processor (RDTSC)
before and after the locking operation to measure the latency of the
operation in cycles. If the receiver process is context-switched in
between the timer readings (e.g., at line eight in Algorithm 3), the
latency measured from their difference will be orders of magnitude
higher as it includes the waiting time of the receiver process in the
scheduler queue - which we believe is what contributes to the long
tail in Figure 3. To overcome missed samples and noise, we record
hundreds of samples and compare it to the baseline distribution of
latencies sampled without contention. We then need to compare
and differentiate the observed sample of latencies from the baseline
to establish contention. To do this, we use a variant of the two-
sample Kolomogorov-Smirinov (KS) test, which typically compares
the maximum of the absolute difference between empirical CDFs of
samples (in our variant, we take themean of the absolute difference
instead of the maximum to reduce sensitivity to outliers). Using this
measure, we can categorize a KS-value above a certain threshold
as a 1-bit (contention) and a value below the threshold as 0-bit
(baseline).

To determine the KS-threshold, we deploy a large number of
lambdas across AWS regions. Some of these lambdas cause con-
tention (aka senders) while others observe contention by collecting
samples of latencies (aka receivers). Each of the samples may or
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Algorithm 3 Reading a bit in the receiver
1: now ← time .now ()
2: end ← now + samplinд_duration
3: samplinд_rate ← num_samples/samplinд_duration
4: address ← cache_line_boundary − 2
5: samples ← {}
6: while now < end do
7: be f ore ← RDTSC ()
8: __ATOMIC_FETCH_ADD (address )
9: af ter ← RDTSC ()
10: samples ← samples ∪ {(af ter − be f ore )}
11: wait until NEXT_POISSON (samplinд_rate )
12: now ← time .now ()
13: end while
14: ks_val ← KOLMOGOROV _SMIRINOV (samples,baseline )
15: return ks_val < ksvalue_threshold

may not have observed contention depending on whether the re-
ceiver was co-resident with a sender lambda (an unknown at this
point). We then calculate the KS-value for each sample against the
baseline and plot a CDF of these values for lambdas of different
sizes in Figure 4. Ideally, we expect a bimodal distribution (stepped
CDF) with the upper and lower peaks corresponding to samples
that have and have not seen contention, and a big gap between the
two (long step). Fortunately, we observe this differentiation with
larger lambda sizes (which allows us to choose a clear threshold),
but we do not observe a clear differentiation with smaller lambdas,
where scheduling instability causes lossy communication (discussed
in 4.3.3). This trend also reflects in the reliability of our technique
across various lambda sizes, as we will show in our evaluation.
Based on the plot, we picked a KS-threshold at 3.0 which seems to
be consistent across AWS regions, suggesting that this threshold is
a platform constant.

We present the pseudo-code of a receiver lambda in Algorithm 3,
which includes all the challenges and subsequent solutions dis-
cussed thus far.

4.3.4 Synchronization. A major enabler of our protocol in sec-
tion 4.2.3 is the ability to synchronize all the co-resident lambdas
when sending and receiving bits. As all these lambdas are running
on the same physical server, they share the server’s clock. On AWS,
for example, we observe that the system clock on lambdas is precise
up to nanoseconds. Assuming that the clocks between different
lambdas only exhibit a drift in the order of microseconds, sampling
at a millisecond scale should provide us a margin for synchro-
nization mismatch. Since we do not observe any synchronization-
related noise in our results, we believe that this is a reasonable
assumption.

4.4 Evaluation
We next examine our co-residence detector with respect to reli-
ability, scalability, and speed, the desirable detection properties
mentioned in section 4. We run all of our experiments with AWS
lambdas [3]. Though we decide to focus on only one of the cloud
providers as a case study, we have previously shown in section 4
that this covert channel exists on the other clouds, and thus we
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Figure 5: This figure shows the fraction of lambdas by
the number of neighbors they identify for two indepen-
dent runs that use same set of underlying AWS containers.
The perfect correlation shows that both runs depict the co-
residence status of those containers regardless of the lamb-
das that ran on them, providing evidence for the correctness
of our approach.

believe these experiments can be replicated on their serverless func-
tions as well. We use the C++ runtime in AWS lambdas as it allows
pointer arithmetic that is required to access the covert channel.

4.4.1 Setup. We start by deploying a series of lambdas from an
AWS lambda account. Once deployed, each lambda participates in
the first phase of the protocol as noted in section 4.2.3, thereby
learning the largest ID of their neighbors. As bit-flip errors are
possible, we repeat the same phase for two more (independent)
"rounds" and take the majority result to record the ID seen by this
lambda. If all three rounds result in different IDs, we classify this
lambda as erroneous and report it in the error rate. We group all
the lambdas that saw the same ID as successful and neighbors. We
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repeat the experiments for different lambda sizes and in various
cloud regions.

4.4.2 Reliability. We consider the results of the technique reliable
when most of the deployed lambdas successfully see the same result
in a majority of the independent rounds (indicating lesser bit-flip
errors) and the resulting co-resident groups we see examine the
ground truth. For the former requirement, we ran an experiment
with 1000 AWS lambdas and compared the error rate across dif-
ferent lambda sizes (the error rate indicates the fraction of these
1000 lambdas that returned erroneous result). Figure 2 indicates
that smaller lambdas exhibit more errors. This is expected because,
as discussed in section 4.3.3, these lambdas experience lossy com-
munication, making it harder for our technique to sense contention.
Lambdas that are 1.5 GB and larger, though, exhibit a 100% success
rate. Of these errors, false positives are rare as we run multiple inde-
pendent rounds, and the chances of two rounds erring at the same
bit(s) (to give the same wrong result across the majority of rounds)
are low. False negatives, however, are common and contribute to
most of the errors.

Correctness To determine correctness, we require ground truth
on which lambdas are co-resident with one another. While such
information is not available, we are able to ascertain correctness of
our approach by utilizing an AWS caching mechanism. On AWS,
each lambda runs in a dedicated container (sandbox). After exe-
cution, AWS caches these containers in order to reuse them [2]
and mitigate "cold start" latencies. We found that global objects
like files are persisted across warm-starts, and can be used to track
all the lambdas that were ever executed in a particular container.
Using this insight, we are able to validate that identical experiments
repeated within minutes of one another will use the same set of
underlying containers for running the deployed lambdas. This al-
lows us to test the correctness of our technique as variance in the
co-residence results between these experiments would suggest a
lack of fidelity in our approach. (Note that the warm-start informa-
tion cannot be used to detect co-residency itself nor can it be used
to verify correctness in all scenarios.)

To demonstrate this correlation, we run an experiment with 1000
1.5GB cold-started lambdas (ID’ed 1 to 1000) in one of newer AWS
regions (me-south-1), which resulted in many co-resident groups.
We repeat the experiment within a few seconds, thereby ensuring
that all 1000 lambdas are warm-started on the second trial (i.e.,
they use the same set of containers from the previous experiment).
For each co-resident group of lambdas in the latter experiment, we
observed that their predecessor lambdas (that used the same set of
containers) in the former experiment formed a co-resident group
as well. That is, while the lambdas to the underlying container
mapping is different across both experiments, the results of the
experiments agree perfectly on the container colocation. Figure 5
shows that both experiments saw the same number of co-resident
groups of different sizes, showing the correctness of the results of
our mechansim.

4.4.3 Scalability & Speed. One of the key properties of this tech-
nique is its short execution time and scalability. Since communi-
cating each binary bit of the ID takes one second, we are able to
scale the technique logarithmically with the number of lambdas
involved. Figure 6 shows this result with experiments involving
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Figure 6:We present the average execution time of the lamb-
das for co-resident runs with a varying number of lambdas.
The execution time increases logarithmically with the num-
ber of lambdas demonstrating the scalability of co-residence
detection with our technique.
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Figure 7: The dashed lines in the figure presents the mean
error ratio at 50% and 95% confidence when sending bits at
various rates over the covert channel. The solid line shows
the effective channel rate after accounting for the overhead
of error correction at the 95% error.

different number of lambdas. For example, in an experiment with
1000 lambdas, each lambda can find its neighbors within a minute of
its invocation, leaving ample time for the attacker to then establish
the covert channel and use it to send information (for reference,
lambdas on AWS can only run for 15 minutes at most). The loga-
rithmic scale of our method also indicates that the cost per lambda
scales logarithmically, making neighbor detection cost-effective.
For example, one 1000 lambda run with 1.5 GB lambdas cost around
just 1.5 USD.

5 PRACTICALITY OF COVERT
COMMUNICATION

In this section, we perform a study to demonstrate the practical-
ity of data transfer using the lambda covert channels discovered
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for the runs shown in Figure 8. Each such co-resident group
can host a covert channel, indicating that a 1000 lambda de-
ployment can enable hundreds of covert channels.

with our co-residence detector. The amount of information that
can be transferred depends on two factors: 1) the capacity of each
channel and 2) the number of co-resident clusters of lambdas, or
rendezvous points, that materialize during the attack. We first pro-
duce an estimate on the capacity of the covert channels established,
and then examine the co-residence density in various AWS regions
to understand the number of rendezvous points and factors that
affect it.

5.1 Covert Channel Capacity
Once co-residence between any two lambdas is established, the
attacker can then use the same memory bus hardware to perform
covert communication. Wu et al. [26], who first introduced covert
channel based on this hardware channel, also presented an efficient
and error-free communication protocol targeting cloud-based plat-
forms like VMs. While such a protocol should theoretically work
for lambdas, extending it is beyond the scope of this work. We
do, however, use a much simpler (albeit more inefficient) protocol
to report a conservative estimate of the capacity of each covert
channel.

Our protocol for data transfer uses the bus contention in the
same way as the co-residence detector in section 4.3 to send and
receive bits and perform clock synchronization. However, now that
we can use our co-residence detector to identify lambdas on a ma-
chine and target the two that we wish to label as the sender and
receiver, we are not concerned about noise from multiple receivers,
and as such can allow the receiver to sample continuously (sec-
tion 4.3.3) and sample for extremely small duration (milliseconds
instead of seconds). While we want the sampling duration to be as
small as possible (in order to increase the rate of bits transferred),
the chances of erasures or errors also increases as the sender and
receiver may get descheduled during this time.

To demonstrate this, we launched hundreds of 3 GB lambdas on
AWS and use our co-residence detector to establish tens of covert
channels. We then send data over these channels at various bitrates
and record the error ratio (for byte-sized data segments). Figure 7
shows the mean error ratio at 50% and 95% one-sided confidence
intervals, both of which increase with the bitrate.

To correct these errors, we use Reed-Solomon coding, a block-
based error correction code that is suitable for burst-errors caused
by descheduling [26]. However, error correction comes with an
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Figure 10: The left plot shows the breakdown of co-resident groups (of varying sizes) of lambdas by two different accounts
in an experiment of 1000 lambdas, where 500 lambdas are launched from each account. The uniformity of the split suggests
that the lambda scheduler might be invariant to the account the lambdas are launched from. Similar results are shown for
different lambda sizes in the right plot.

overhead; with byte-sized symbols, Reed-Solomon requires twice as
many parity bytes as there are errors to correct. So, for each bitrate,
we must compute effective bitrate by subtracting the overhead of
error correction bytes. From Figure 7, we can see that effective
bitrate rises to a maximum of over 200 bits per second (bps) (at
500 bps raw rate) before falling again due to high error rate. We
confirmed this by sending Reed-Solomon encoded data over the
covert channels at this rate and observed near-zero data corruption
after decoding. Thus, we conclude that, by a conservative estimate,
we can safely send data across each of these covert channels at a
rate of around 200 bps.

5.2 Covert Channel Density
Finally, we present measurements on covert channel density on
AWS using our co-residence detector, and discuss the factors that
may affect this density. As we discussed in section 3, each co-
resident group of lambdas represent an individual server in the
cloud and hence can enable an independent covert channel wher-
ever the group has more than two lambdas. So we attempt to answer
the following question: assuming that the user launches a number
of (sender and receiver) lambdas at a specific point in time, what is
the expected number of such co-resident groups (with two or more
lambdas) that they might see?We deploy a large number of lambdas
on various AWS regions and report the co-residence density, that
is, the average number of such co-residence groups. The higher the
co-residence density, the easier it is for the user to ultimately estab-
lish covert channels with lambdas, and the more information they
can send. Unless specified otherwise, all the experiments discussed
in this section are performed with 1.5 GB lambdas and executed
successfully with zero error in co-residence detection.

5.2.1 Across AWS regions. We execute our co-residence detector
with 1000 1.5 GB lambdas in various AWS regions. Figure 8 com-
prises multiple plots depicting the co-resident groups per region,
with each bar indicating the fraction of lambdas that detected a
certain number of neighbors (i.e., that belong to a co-resident group

of a certain size). Plots that skew to the right indicate a higher
co-residence density when compared to the plots skewed to the left.
We note that, in most regions, almost all lambdas recognize at least
one neighbor (indicated by smaller or non-existent first bar in each
plot). We hypothesize that the co-residence density is (inversely)
dependent on the total number of servers and the lambda activity in
the region, both of which can be assumed to be lower in newer AWS
regions resulting in higher co-residence density in those regions.
Figure 9 shows the total number of co-resident groups with two
or more lambdas for a 1000 lambda run, each of which enables an
independent covert channel. The ample co-residence in general
across all the regions shows that lambdas provide a fertile ground
for covert communication.

5.2.2 Other factors. We also examine how co-residence is affected
by various launch strategies that the user may use, like deploying
lambdas from multiple AWS accounts and different lambda sizes. In
particular, we wish to determine if our mechanism exhibits differ-
ent results when: 1) the user deploys sender lambdas and receiver
lambdas on two separate accounts (normally the case with covert
channels) and 2) the senders and receivers are created with different
lambdas sizes. To answer these questions, we run an experiment
with 1000 lambdas, in which we launch 500 lambdas from one ac-
count (senders) and 500 from the other deployed in a random order.
The co-residence observed was comparable to the case where all the
lambdas were launched from one account. In the left subfigure of
Figure 10, we show the breakdown of co-resident group of lambdas
of each size among the two accounts. We can see that among the
co-resident groups of all sizes, roughly half of the lambdas came
from either account. This suggests that lambda scheduler could
be agnostic to the accounts the lambdas were launched from. We
see similar results for different lambda sizes, as shown in the right
subfigure of Figure 10.
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6 DISCUSSION
Alternate use cases Our main motivation behind proposing a co-
residence detector for lambdas is to demonstrate the feasibility of
covert channels. However, there are other scenarios where such
tool can be (ab)used, of which we provide a couple of examples.
• Previous studies on performance aspects of lambdas (like
performance isolation [24]) generally need a way to find co-
resident lambdas. As software-level logical channels begin
to disappear, our tool might provide a reliable alternative.
• Burst parallel frameworks [8] that orchestrate lambdas can
use our co-residence detector as a locality indicator to take
advantage of server locality.

Mitigation In the previous section, we showed that our co-
residence detector makes the covert channels practical with lamb-
das, so it is important that clouds address this issue. One way to
disable our co-residence detector is to fix the underlying memory
bus channel that it employs. However, this only works for newer
generation of servers and is not practical for existing infrastruc-
ture. An easier solution, one that is only practical with lambdas, is
to disable the lambda support for low-level languages (or unsafe
versions of high-level languages) by the cloud providers. This will
prevent pointer arithmetic operations that are required to activate
this channel. However, in all three cloud platforms we examined,
these unsafe or low level languages were introduced as options at
a later point, indicating that there is a business use case. In that
case, cloud providers may look at more expensive solutions like
BusMonitor [20] that isolates memory bus usage for different ten-
ants by trapping the atomic operations to the hypervisor. We leave
such exploration to future work.

7 RELATEDWORK
Cloud Attacks Co-residency is possible because of covert chan-
nels, so we begin our related work with an investigation into cloud
attacks. Initial papers in co-residency detection utilized host in-
formation and network addresses arising due to imperfect virtual-
ization [19]. However, these channels are now obsolete, as cloud
provides have strengthened virtualization and introduced Virtual
Private Clouds [4]. Later work used cache-based channels in vari-
ous levels of the cache [12, 15, 28, 35] and hardware based channels
like thermal covert channels [17], RNG module [7] and memory
bus [26] have also been explored in the recent past. Moreover, stud-
ies have found that VM performance can be significantly degraded
using memory DDoS attacks [31], while containers are susceptible
to power attacks from adjacent containers [9].

Our work focuses on using the memory bus as a covert
channel for determining cooperative co-residency. Covert channels
using memory bus were first introduced by Wu et. al [26], and
subsequently has been used for co-residency detection on VMs
and containers [21, 34] Wu et. al [26] introduced a new technique
to lock the memory bus by using atomic memory operations on
addresses that fall on multiple cache lines, a technique we rely on
in our own work.

Co-residency One of the first pieces of literature in detecting
VM co-residency was introduced by Ristenpart et al., who
demonstrated that VM co-residency detection was possible and

that these techniques could be used to gather information about the
victim machine (such as keystrokes and network usage) [19]. This
initial work was further expanded in subsequent years to examine
co-residency using memory bus locking [30] and active traffic
analysis [6], as well as determining placement vulnerabilities in
multi-tenant public Platform-as-a-Service systems [22, 33]. Finally,
Zhang et al. demonstrated a technique to detect VM co-residency
detection via side-channel analyses [34]. Our work expands on
these previous works by investigating co-residency for lambdas.

Lambdas While lambdas are a much newer technology than VMs,
there still exists literature on the subject. Recent studies examined
cost comparisons of running web applications in the cloud on lamb-
das versus other architectures [23], and also examined the lambdas
in the context of cost-effectiveness of batching and data processing
with them [13]. Further research has shown how lambdas perform
with scalability and hardware isolation, indicating some flaws in the
lambda architecture [24]. From a security perspective, Izhikevich
et. al examined lambda co-residency using RNG and memory bus
techniques (similar to techniques utilized in VM co-residency) [11].
However, our work differs from this study in that our technique
informs the user of which lambdas are on the same machine, not
only that the lambdas experience co-residency.

8 ETHICAL CONSIDERATIONS
As with any large scale measurement project, we discuss the ethical
considerations. First, there are security and privacy concerns of
using this technique to uncover other consumer’s lambdas. How-
ever, since we focus on co-operative co-residence detection, we
only determine co-residence for the lambdas we launched, and do
not gain insight into other consumer’s lambdas. Second, there is the
concern that our experiments may cause performance issues with
other lambdas, as we may block their access to the memory bus.
We believe this concern is small, for a number of reasons. Memory
accesses are infrequent due to the multiple levels of caches; we
would only be affecting a small number of operations. Memory ac-
cesses and locking operations are FIFO, which prevents starvation
of any one of the lambdas sharing a machine. Moreover, lambdas
are generally not recommended for latency-sensitive workloads,
due to their cold-start latencies. Thus, the small amount of lambdas
that we might affect should not, in practice, be affected in their
longterm computational goals.

9 CONCLUSION
In this paper, we have demonstrated a technique to build covert
channels entirely using serverless cloud functions such as AWS
lambdas. To achieve this goal, we developed a fast and reliable
co-residence detector for lambdas, and evaluated it for correct-
ness and scalability. Finally, we have empirically demonstrated the
practicality of such covert communication by studying the covert
channel capacity and co-residence density of lambdas on various
AWS regions.
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