Understanding the Efficacy of Phishing Training in Practice
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Abstract—This paper empirically evaluates the efficacy of two
ubiquitous forms of enterprise security training: annual cy-
bersecurity awareness training and embedded anti-phishing
training exercises. Specifically, our work analyzes the results
of an 8-month randomized controlled experiment involving ten
simulated phishing campaigns sent to over 19,500 employees
at a large healthcare organization. Our results suggest that
these efforts offer limited value. First, we find no significant
relationship between whether users have recently completed
cybersecurity awareness training and their likelihood of failing
a phishing simulation. Second, when evaluating recipients of
embedded phishing training, we find that the absolute dif-
ference in failure rates between trained and untrained users
is extremely low across a variety of training content. Third,
we observe that most users spend minimal time interacting
with embedded phishing training material in-the-wild; and
that for specific types of training content, users who receive
and complete more instances of the training can have an
increased likelihood of failing subsequent phishing simulations.
Taken together, our results suggest that anti-phishing training
programs, in their current and commonly deployed forms, are
unlikely to offer significant practical value in reducing phishing
risks.

1. Introduction

This paper focuses on simple, yet practically important,
questions: what is the real-world efficacy of phishing train-
ing as practiced in the healthcare sector today and can we
characterize the underlying reasons for these results?

The motivation for these questions is clear. By any
measure, phishing remains one of the principal unsolved
attack vectors in modern organizations. In spite of 20 years
of research and development into malicious email filtering
techniques, a 2023 IBM study identifies phishing as the sin-
gle largest source of successful breaches (16% overall) [20].
This threat is particularly challenging in the healthcare sec-
tor where targeted data breaches have reached record highs.
In 2023 alone, the US Department of Health and Human
Services (HHS) reported over 725 large data breach events,
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covering over 133M health records, and 460 associated
ransomware incidents (more than one per day) [2], [11].

Absent an effective technical defense, organizations have
turned to security training as a means to staunch the bleed-
ing. Our own institution admonishes each of us to “Be a
Human Firewall” — to identify and resist enticements to
click on suspicious email-borne links. Indeed, in many sec-
tors it has become standard to mandate both formal security
training on an annual basis and to engage in unscheduled
phishing exercises in which employees are sent simulated
phishing emails and then provided “embedded” training if
they mistakenly click on the email’s links [29]. Healthcare
is no exception, and HHS recommends that all medium and
large US healthcare organizations engage in both annual
awareness training as well as monthly “simulated phishing
and social engineering campaigns” [[10].

The value of such training seems intuitive in the abstract,
and has been justified by initial lab studies and modest-scale
experiments demonstrating positive results. However, recent
large-scale empirical measurements have brought these find-
ings into question. Notably, the largest study of its kind —
Lain et al’s 15-month post-mortem analysis of embedded
phishing training involving 14,000 corporate employees —
found no positive effects from training (and even some
evidence of a negative effect) [28].

In this paper we further explore this question, in the
particular context of the healthcare setting, using data from
a carefully designed quality-improvement effort at UC San
Diego Health, a large healthcare institution we abbreviate
as “UCSD Health”. Critically, this dataset, covering 19,000
healthcare workers over 8 months, was meticulously de-
signed to include explicit control groups (i.e., employees
receiving no training), randomized assignment into different
training conditions and phishing lures, and detailed analyt-
ics of training engagement and completion. Together, this
design provides unusually rich evidence for investigating
questions of training efficacy and allows us to make the
following findings:

e No clear benefit from annual security training. We
demonstrate no correlation between how recently a user
in our study has completed annual “awareness” training
and whether the user clicks on links in simulated
phishing messages (§ {.2).

o Limited benefit from embedded phishing training. Using
randomized controlled trials and statistical modeling,



embedded training provides a statistically-significant
reduction in average failure rate, but of only 2% (§ @])

o The necessity of control groups. Our data shows that
while banal phishing lures may only attract clicks
from 1-2% of users, other lures achieve upwards of
30% failure rates, far outstripping the potential ben-
efits attributable to training (§ [3.2). Thus, training
outcome assessments must always be couched in terms
of an underlying control group that receives no training
(something rarely included in research or practice).

o Why phishing simulations fail to deliver training. We
show that phishing simulations fail to deliver apprecia-
ble training for two reasons in practice. First, only a
small fraction of users “fail” in any given simulation
(a median of 10%) and thus in any exercise the vast
majority of users receive no training. Moreover, failing
to click on a lure is not strongly predictive of future out-
comes and the majority of users (over 56%) clicked on
a phishing link at some point in our study, whether or
not they had received training. Second, those users who
receive training typically fail to engage with training
materials. By measuring “time on page” for embedded
training materials, we show that over half of all training
sessions end within 10 seconds and less than 24% of
users formally complete the training materials (§ [6.2).

o The relative value of training type. Our data includes
separate cohorts that vary in the nature of the training
content (generic anti-phishing information vs. training
contextually related to the email received) and the
mode of delivery (static webpages vs. training requiring
interactive engagement). For the subset of users who
both receive training and engage with the training ma-
terials to completion, we show significant differences in
relative outcome. While static training results are neg-
atively correlated with future outcomes, we show that
interactive training can reduce the likelihood of clicking
on a subsequent phishing lure by 19%. However, this
latter result is small in absolute magnitude (likely due
to the low completion mentioned earlier) and it remains
an open question if this represents a selection effect or
would generalize to the remaining users if they could
be convinced to engage with training (§ [6.2).

Taken together, and in the context of other real-world
controlled evaluations [7]], [28]], our results offer a sobering
picture on the efficacy of existing phishing training. As
currently designed and deployed in practice, training is
unlikely to offer significant value relative to its considerable
expense in time and effort.

2. Background

Organizations routinely deploy cybersecurity training
with the hope of improving employee security behavior,
and to satisfy regulations or insurance guidelines [9], [[13].
Our work studies the efficacy of two widespread types of
training: (annual) security awareness training and embedded
phishing training.

In annual “cybersecurity awareness” training, employees
receive a mandatory training program, typically via an on-
line training website, that aims to teach users a broad array
of basic security best practices and threats to keep in mind.
UCSD Health uses material from KnowBe4 for its annual
training, which consists of a website that walks through a
set of instructional videos as well as interactive question-
answer quizzes about security threats like phishing.

During embedded phishing training [23]], an organization
periodically sends simulated phishing email messages to its
employees. If an employee fails a simulated attack (e.g.,
clicks on an embedded phishing link), they are immediately
redirected to a training website that notifies the user they
fell for a phishing simulation and provides them with educa-
tional material about identifying phishing attacks. This form
of training remains a widely deployed practice, with a multi-
billion dollar industry providing this training as a service
(e.g., Proofpoint, Barracuda Networks, etc.). UCSD Health
uses the Proofpoint platform for its embedded phishing
training.

2.1. Related Work

In this section we focus on two relevant areas of
prior work: cybersecurity awareness training and embedded
phishing training.

Security Awareness Training: Prior work on security
awareness training has largely involved lab settings with
university students, and measured training efficacy by com-
paring users’ pre vs. post-training performance on security
quizzes and surveys. These studies largely conclude that
security awareness training leads to a positive security im-
pact. For example, studies have examined many different
forms of awareness training, ranging from in-person and
instructor led sessions to custom-built educational videos.
These prior efforts show that after completing training, users
have higher scores on security quizzes and/or have higher
accuracy at identifying phishing vs. legitimate messages in
line-ups of different email messages [4], [35], [42]], [43],
[46]. Similarly, at a more macroscopic level, Kweon et al.
found a correlation between spending more time on security
training and fewer cybersecurity incidents in a study of
7,089 organizations in Korea [26].

In contrast, one prior study by Back and Guerette, which
involved 2,000 employees at a US research university, found
that users who completed awareness training were more
likely to click on a phishing email link than users who
did not complete the training [3]. However, the study itself
adds a caveat that its negative result might stem from
several confounders, such as not truly randomizing users
in the training vs. control group and that as much as six-
months may have elapsed between when a user completed
the training and when they received the simulated phishing
email. Thus, although prior work demonstrates that various
forms of awareness training improve user performance on
security tests, it remains an open question whether com-
monly deployed versions of such training today (e.g., an-



nually assigned training delivered via websites) help protect
employees against malicious email they receive in-the-wild.

In addition, this prior literature collectively suggests
that the potential protection gained from training diminishes
over time. For example, prior work shows that although
users’ results on security knowledge quizzes improves im-
mediately after training, after four to five months, users’
performance deteriorates and no longer exceeds their pre-
training levels [4]], [6], [35]]. Other work by Zhang et al. [46]
suggests that training has an even shorter protective “shelf
life”, where the knowledge and improvement from a single
training session disappears after just one month.

Embedded Phishing Training: Most prior research sug-
gests that embedded phishing training improves users’ abil-
ity to identify and avoid phishing attacks [[14], [21]]. Among
the earliest work, Kumaraguru et al. proposed the idea
of embedded phishing training based on principles from
learning science theory [25]. From these principles, the
authors argue that training that involves learning-by-doing
(in particular receiving a phishing email and making a real
decision to fall for the attack or not) and immediate feedback
(i.e., providing users with immediate training if they fail the
simulation) should provide effective anti-phishing education.
Multiple lab-based studies involving role-playing exercises
indicate that embedded training does help users identify
phishing attacks, that users do retain educational knowledge
about phishing attacks for at least several days, that multiple
rounds of training provide enhanced educational knowledge,
and that personalization and the educational form factor
(e.g., text vs. graphics, static vs. interactive content, and
gamification) impact the efficacy of training [22]], [24], [30],
[36]], [40], [45].

Additionally, several studies in real-world organizations
also suggest that embedded phishing training can reduce
users’ susceptibility to phishing attacks [[18]], [30]. For exam-
ple, Hillman et al. [[18]] and Kumaraguru et al. [24]] compared
users’ performance on simulated phishing email messages
over time, and found that users’ failure rates decreased over
time. However, these studies did not employ or compare the
performance of users who received training against a true
control group to capture whether the decreased failure over
time results from potentially “weaker” phishing lures over
time versus beneficial knowledge learned from the training
material. Separately, Siadati et al. analyze eight months of
embedded phishing training results from an enterprise with
19,000 employees who received randomly selected subsets
of 26 phishing lures [41]. Because their study does not
involve a randomized controlled design, they construct a
regression model to estimate the efficacy of anti-phishing
training and conclude that training does appear to improve
users’ ability to identify persuasive phishing attacks.

In contrast to this large body of prior work, a recent
study by Lain et al. suggests that embedded phishing train-
ing actually leads to worse performance for users, when
compared to users who receive no training [28]]. Their
study explores data from a randomized controlled experi-
ment where employees at a large organization received 8

simulated phishing emails over 15 months. In their study,
the training consisted of a static webpage with several para-
graphs of educational text and a button to optionally start an
additional training exercise. Among a number of results, this
study’s findings indicate that users who received embedded
training failed phishing simulations at a statistically higher
rate than users in a control group who received no training
at all. In a subsequent study involving a smaller set of
users, Lain et al. [27] find that embedded phishing training
can lead to small improvements (decreases) in users’ future
failure rates. But their analysis also shows that users who
receive training perform no better than users who receive
only “deterrent emails” that warn of consequences for fail-
ing future phishing simulations, which suggests the major
benefit of training comes from simply reminding users of the
phishing threat, rather than educational content. Separately,
an earlier study by Caputo et al. [[7], which also involved a
randomized controlled experiment with static training, found
no significant difference in the failure rate of users in a
control group versus those in a training group, based on
three rounds of phishing simulations. Related, Gordon et
al. [16] study whether phishing training can help decrease
the phishing clickthrough rate of high-failure users (who
failed five or more phishing simulations during a two-year
timespan). Their study used quasi-embedded training, where
high-failure users received a separate email requiring them
to take an intensive offline anti-phishing training. Across five
subsequent phishing simulations, these high-failure users
continued to fail at a higher rate than other users in the
organization after completing the offline training.

Apart from efficacy, prior work has also explored the
potential costs incurred by embedded phishing training. On
the positive side, responses from employees, who recently
received phishing simulations and participated in voluntary
interviews, suggest that users view these training exercises
favorably [27]], [38], [39]]. Users report that the phishing
simulations provide them with opportunities to learn and
test their knowledge, as well as making sure they remain
vigilant of phishing attacks. However, other studies highlight
various burdens and risks ranging from increased stress to
users, the monetary and time costs from procuring and de-
ploying phishing simulations, a decrease in users’ perceived
efficacy, and security fatigue from too many warnings or
reminders [S[], [14]], [36], [39], [44].

Given the ubiquity of embedded phishing training and
the potential costs it imposes, an important question is
whether this training is effective in practice and why such
discrepancies about its efficacy exist in the literature. Are
these contradicting results the product of subtle design deci-
sions (e.g., the content and advice in the training material)?
Or do these results emerge due to the use of randomized
controls in a real-world setting versus earlier work’s large
reliance on lab-based studies or non-randomized trials in
real-world organizations? One goal of our work aims to
provide some empirically-backed explanations that reconcile
these conflicting results.



3. Methodology

Our study analyzes the performance of nearly 20,000
full-time employees at UCSD Health across eight months
of simulated phishing campaigns sent between January 2023
and October 2023. UCSD Health is a major medical center
that is part of a large research university, whose employees
span a variety of medical roles (e.g., doctors and nurses) as
well as a diverse array of “traditional” enterprise jobs such
as financial, HR, IT, and administrative staff. For their email
infrastructure, UCSD Health exclusively uses Microsoft Of-
fice 365 with mail forwarding disabled. On roughly one day
per month, UCSD Health sent out a simulated phishing cam-
paign, where each campaign contained one to four distinct
phishing email messages depending on the month. Each user
received only one of the campaign’s phishing messages per
month, where the exact message depended on the group
the user was randomly assigned to at the beginning of the
study (§ B.1). In total these campaigns involved ten unique
phishing email messages spanning a variety of deceptive
narratives (“lures”) described in Section [3.2] All of the
phishing lures focused on drive-by-download or credential
phishing attacks, where a user failed the phishing simulation
if they clicked on the embedded phishing link.

3.1. Experiment Design

Annual Security Training: At UCSD Health, each em-
ployee must complete a standalone security awareness train-
ing once per year (with the material designed by KnowBe4).
Since employees engage in this annual training concurrently
but independently of the embedded phishing simulations,
the two activities provide an opportunity to analyze the
correlation between how recently employees completed their
annual training and their performance on the simulated
phishing messages sent during this study.

When employees first join, the HR system automatically
assigns an employee this annual security training to com-
plete within a few weeks. Once a user has completed their
training, the system automatically reassigns this training
to the user after one year (365 days) has elapsed. This
training appears in the institution’s standard HR learning
platform (e.g., similar to a standard enterprise HR system
like Workday). Thus, throughout the duration of this study,
the system automatically assigns annual security training for
a rolling subset of the employees at UCSD Health.

Embedded Phishing Training: The procedure for embed-
ded phishing training followed the standard process de-
scribed in Section [2] where UCSD Health uses Proofpoint
as its anti-phishing platform. For each simulated phishing
message, if a user failed the phishing exercise (i.e., clicked
on an embedded phishing link), the resulting webpage dis-
played anti-phishing training material and notified the user
that they had fallen for a simulated phishing email. As with
all embedded training, only users who failed the phishing
simulation received the training content that month, since

Don't Worry!

This is a simulation sent from UC San Diego Health.

Had this been real you would've been phished.

Image of the sender and phishing message,
with warning signs highlighted.

Here are five warning signs to watch out for:

O OO OO

Advice Text

Summary of which of the five warning signs were present in the phishing email.

Please do not share your experience with colleagues, so they can learn too.

Got it! Thanks!

Click to acknowledge and close

UC San Diego Health

Figure 1: An example of the presentation and layout of the
“contextual static” training content displayed to users (§ [.I),
shown as a template. Due to the terms of UCSD Health’s contract
with Proofpoint, we are unable to include images or examples
of specific phishing messages or training material derived from
Proofpoint’s platform.

users who avoided the phishing URL would not click and
load the training website.

As part of their phishing exercises, UCSD Health ex-
plored five different training formats. As described below,
this setup included a control group and four types of training
that varied in their interactivity and whether the training
content was contextualized/customized specifically for the
phishing lure the user failed. These variations in training
style help explore prior claims that interactive educational
content and content related to a user’s current situation and
actions can help improve their learning experience [23],
[37]. Figure |1} shows an example layout of one training
(“contextual static”) webpage.

1) Control Group: Users in this training group received no
training material for the duration of the study. Instead,
if a user failed a phishing simulation, the resulting
webpage loaded a 404 ERROR message that did not
mention anything about phishing or provide educational
content. By comparing the performance of users in this
control group against those in training groups, we can
assess whether training improves the ability of users to
avoid phishing attacks.



2) Generic Static Group: Users in this training group
received a static educational webpage, taken directly
from Proofpoint’s embedded training library, that pro-
vides tips on how to avoid phishing attacks.

3) Generic Interactive Group: Users in this group also
received a training webpage directly from Proofpoint’s
training library, that displays an example phishing
email and walks users through an interactive question-
and-answer training exercise with tips for spotting
phishing attacks.

4) Contextual Static Group: This group received an
adapted version of Proofpoint’s static training webpage
(used for the Generic Static group) modified so that the
advice specifically related to the phishing lure the user
received. Concretely, this training replaced the generic
example phishing message with the actual phishing
email the user had received, modified the advice con-
tent to mention which phishing warning signs and tips
applied to the specific email, and used highlighting and
a red-colored font to illustrate where these occurred in
the displayed email.

5) Contextual Interactive Group: Finally, this group re-
ceived a version of Proofpoint’s generic interactive
training webpage, modified to specifically relate to
the simulation the user had failed. The example email
was replaced with the exact phishing email the user
received and the question-answer content was updated
to accurately reflect whether a warning sign was present
or not in the phishing email.

To analyze the efficacy of these different training pro-
grams, UCSD Health used a randomized, controlled study
design whereby each user was assigned to one of these
five groups for the entire duration of the study. Initially
(and after cleaning the data, §3.2), each group consisted
of roughly 3,950 users. But due to changes in employment
status, the number fluctuates between 3,700 — 3,950 users
per group during different months of the study. To help
understand whether the sequencing or types of phishing
lures a user received had any impact on user learning and
future performance, each of the five training groups was
further divided by randomly assigning users to one of four
“tracks” (subsets), for a total of twenty distinct cohorts: five
training groups each with four tracks. During each active
month, a user received exactly one simulated phishing email,
where the contents (lure) of the phishing email varied based
on which track a user belonged to. For example, users in
Cohort #1 (Control group, Track I) received an account-
related phishing email during Month 1; similarly, users in
Cohort #2 (Generic Static group, Track 1) also received
the same phishing email during Month 1. On the other
hand, users in Cohort #6 (Control group, Track 2) received
a document-related phishing email during Month 1. This
design allowed us to expose distinct subsets of the Control
and Training groups to different orderings of the phishing
emails, which we also control for in our statistical analysis.

Power Analysis: To determine appropriate group sizes, we
conducted a power analysis for testing for differences in

phishing failure rates between control and treatment groups.
We found that a size of N = 2,095 per group would be
sufficient to achieve 90% power for detecting at least a 5%
difference at a two-sided significance criterion of o = 0.05,
for a two sample proportion test across a range of expected
failure rates in the control group (between 10% and 50%).
After adjusting for multiple comparisons by taking a* =
«/3 to compare three different types of training (interactive,
static, and control), we would need N = 2,693 per group,
which our study greatly exceeds.

Statistical Analysis: To determine whether our results
show statistically significant relationships between training
and users’ performance on phishing simulations, we ana-
lyzed and fit multivariable generalized linear mixed effects
(GLME) models to our study’s data [15], [33]. GLME
models allow us to compute an Odds Ratio (OR) that
represents the relative change in a key outcome’s value (e.g.,
a user’s likelihood of failure) given a change in the main
predictor variable (e.g., whether a user received training or
not), while controlling for potential confounding variables
(e.g., the different types of phishing lures and the number
of times a user has previously failed a phishing simulation).
In addition to an Odds Ratio, these models also provide a
95% confidence interval (CI) and a p-value (interpreted as
statistically significant if P < 0.05) [15], [19]

3.2. Data

During each simulated phishing campaign, UCSD
Health collected the following anonymized information for
each user via Proofpoint’s simulation platform: whether the
user viewed the email, whether the user failed the simulation
(clicked the embedded phishing link), whether a failing user
officially completed the embedded training (by clicking an
“acknowledge” completion button at the end of training), the
amount of time a failing user spent on the embedded training
(in seconds), and the ISP and AS of the IP address that
loaded the training webpage (if a user failed the simulation).
Additionally, for each phishing simulation, UCSD Health
augmented the data to include the number of days since
a user last completed their annual security training and
whether or not a user logged into Office 365 during the
duration of the phishing campaign.

Data Cleaning: We took several post-hoc measures to en-
sure that our dataset contains only active, full-time employ-
ees; since inactive accounts will not open email messages,
these data cleaning steps allow us to better estimate the
true failure rate. First, UCSD Health security team members
helped us exclude (at monthly granularity) users who were
not active, full-time employees at the time based on HR
data. Similarly, the data excluded users who had never been
assigned annual training, which removed temporary users or
email addresses corresponding to service/role accounts that

1. Although we cannot share any data from our study, we have released
R code for running the final models and analysis in our paper: https://
github.com/ucsdsysnet/phishing_training_code_oakland2025.
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Phishing Lure # of Users  Avg Failure Rate

Outlook Pwd 4,931 1.82%
Login Account 12,720 1.85%
Open Enroll 14,691 7.62%
Shared Doc (Microsoft) 15,683 8.99%
OneDrive Medical 18,438 9.20%
Docusign 23,526 9.63%
Building Evac 17,359 10.33%
Traffic Ticket 17,676 18.60%
Dress Code 4,954 27.65%
Vacation Policy 17,923 30.80%

TABLE 1: The number of recipients for each phishing email across
our entire study and the average failure rate across all recipients.
Appendix @ contains more details about each email.

were accidentally included in the user list. As a final step,
we also removed any user who had not logged into Office
365 during the entire duration of our study. In total after
these cleaning steps, the data consisted of 19,789 active,
full-time employees (with a random ID for each user).

Additionally, the security team at UCSD Health followed
Office 365 and Proofpoint’s best practices for ensuring that
phishing simulations were not unintentionally disrupted or
triggered by email protection settings. These steps included
configuring specific rules (“allowlisting”) in Office 365
for the phishing simulation domains and email content to
prevent Office 365 from quarantining these emails and/or
crawling the URLs. For one of the control cohorts in each
of Month 3 and 4, the allowlisting rules were incorrectly
configured and O365 quarantined nearly all of the phishing
simulations for users in these cohorts. We conservatively
excluded the data from all users in the affected cohort in
each of these two months. Finally, during two of the early
months in this study, one setting to prevent Office 365
from crawling URLs was not configured correctly for some
phishing campaigns. As a result, we applied an additional
data cleaning step where we removed any failure events
where the ISP/AS of the clicking IP address corresponded
to Microsoft entities. Thus, if both Microsoft’s crawler and
a real user clicked on the embedded phishing URL in an
email message, our dataset would contain only the legitimate
user’s click (failure). However, if only Microsoft’s crawler
visited the embedded URL, our dataset would not report any
failure for that user.

Summary Statistics: Table |1| shows the total number of
users who received each of the ten phishing email lures
across the duration of the study, and the total failure rate
for each lure. The ten phishing messages were variations
of five distinct lures (deceptive narratives), and specifically
focused on email messages relevant to enterprise employees:
two messages used a lure stating the recipient had some
issue with their account or password, three lures attempted
to deceive the user with a shared work document that the
user needs to view, two lures discuss potential benefits
policy changes (e.g., vacation or open enrollment), two other
lures involved social protocol updates (e.g., dress code and
building evacuation changes), and the final lure notified the
user of a traffic / parking violation.

=
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Figure 2: The cumulative percent of users who have failed.

Note that not all users received every phishing message
(resulting in different numbers of recipients per phishing
lure as seen in Table[I). The exact eight phishing messages
a user received depended on their track (randomized order
of phishing emails) as described earlier in Section [3.1] As
a result, in some cases only one track received a specific
phishing lure. However, every track (and thus every phishing
email) contained a fixed subset of users in the control
group and each of the four training groups, allowing our
statistical analysis (§ [5.1) to accurately compare the efficacy
of embedded training against users in the control group.
Additionally, one of the tracks received the same phishing
email (“Docusign”) in Months 2 and 8 (increasing the
number of recipients beyond the total number of users).
We computed all our statistical models both including and
excluding the Month 8 data for users with this “repeat”
phishing simulation, and the results do not change.

Table [T] underscores that the efficacy (average failure
rate) of the simulated phishing campaigns varies signifi-
cantly among different phishing lures (from 1.8-30.8%),
and even between messages that follow similar themes (e.g.,
7.6% for open enrollment benefits vs. 30.8% for vacation
policy). This variability illustrates the need for randomized,
controlled comparisons and careful statistical analysis to
evaluate whether a change in a user’s phishing failure is
due to training they received or other confounding factors,
such as subsequently receiving “weaker” phishing messages
that users can more easily identify.

User failure rates over time: Across all phishing sim-
ulations, 56% of users (11,077 out of 19,789) failed at
least once by clicking on an embedded phishing URL.
Additionally, 25.9% of users failed at least two phishing
simulations, 9.8% failed at least three, and 3.5% failed at
least four exercises; one user failed every single simulation.

Figure [2] shows the percent of users who failed at least
one simulated phishing campaign over time. The results
show a steady increase in the number of users who fail
the phishing simulation throughout the study. In the first
month 9.7% of the users clicked on a phishing URL, and
after the eighth month 56% of users in the population



have clicked on at least one phishing URL. This steadily
increasing failure rate suggests that with enough time and
effort, attackers would likely be able to fool a large fraction
of an organization’s employees into falling for a phishing
attack, and that users who avoid earlier phishing emails will
not necessarily avoid future attacks.

3.3. Ethical Context

Similar to Lain et al. [28]], the data for this study was col-
lected as part of an existing and regular corporate practice of
UCSD Health. This practice included both the requirement
that all employees complete annual security awareness train-
ing (which includes specific material on defending against
phishing) as well as active, unannounced, phishing simu-
lations designed to test employees and deliver embedded
training if appropriate. These activities were undertaken by
UCSD Health IT staff, at the direction of their leadership,
as part of an effort to ensure compliance with both internal
best practice policy and external regulatory requirements.
Both activities, i.e., mandatory annual training and periodic
phishing simulations, were known to employees, but they
were not informed precisely when the simulation exercises
would take place, nor was there any post-exercise debrief-
ing beyond the delivery of training content for those who
triggered it. The study design in this work (i.e., the ran-
domized controlled trials, different lures and training types)
arose from a UCSD Health quality improvement initiative
to improve anti-phishing training efforts and, ideally, re-
duce subsequent failures among employees. These efforts,
and additional collaboration with researchers on this paper,
received approval from UCSD Health’s security, legal and
research compliance teams. Users were also assured that
their performance on the phishing simulations and training
would have no bearing on their employment status.

As the non-UCSD Health authors of this paper became
involved, they sought to collaborate and use this data to ex-
plore the broader research questions described herein. Prior
to commencing any such work, we formally requested and
received additional approval from UCSD’s human subjects
review board, which declared the study to be non-human
subjects research as the data collection was pre-existing and
the resulting data was anonymized. This subgroup worked
with UCSD Health’s IT team on anonymized data that only
reflected whether each abstract user, randomly assigned to a
particular cohort, clicked on a link in a given month and, if
so, how long they stayed on the training page and whether
or not they completed the training.

Given this context, and a consequentialist lens for eval-
uating harms, we believe our analysis posed minimal risks.
Employees were already subject to the overhead of annual
training and embedded phishing simulations as a byproduct
of existing organizational policy at UCSD Health. Thus,
our analysis of this data did not create any new workload
or unique risk. Moreover, since individual employees were
never identified, there was no particularized privacy injury
(beyond that inflicted by the pre-existing training require-
ment itself). Balanced against this status quo, our study

has the beneficial potential to understand the utility of such
training as well as the factors that lead to its efficacy or
inefficacy. Furthermore, in this case, the impact of either
positive results (identifying effective training approaches)
or negative results (finding that training offers no value and
should be discontinued) have the clear potential to benefit
participants.

4. Annual Security Awareness Training

As a baseline, we first explore whether user failures
in the phishing simulations are correlated with the time
since their last annual security awareness training. As part
of an existing policy that predates our study, all full-time
employees at UCSD Health must complete an annual cy-
bersecurity awareness training program (§ [3.1I), which uses
material provided by KnowBe4, a third-party company that
specializes in cybersecurity training. The content of this
training focuses heavily on social engineering attacks, and
includes short quizzes and anti-phishing advice; Figure [5]in
the Appendix shows a sample screenshot from this training.

To understand whether this annual training correlates
with better security outcomes, in this section we examine
if employees who recently completed the training were less
susceptible to the simulated phishing attacks we sent each
month. Unlike embedded phishing training, where users
can freely exit the loaded training webpage, this annual
training is part of an organization’s traditional HR system
with institutional compliance policies. Thus it reflects a
mandatory form of training that users must engage with.
Ultimately, our analysis shows no association between how
recently an employee completed their annual training and
whether they failed a simulated phishing attack.

4.1. Data

For each month of a simulated phishing campaign, our
data contains the completion status of each employee’s
annual training: the date the employee was assigned training
and the date they last completed the security training. Across
all eight months, an average of 83.7% of employees had
satisfied the annual security training requirement at the
time users received a phishing email. The remaining users
are overdue on training (i.e., completed their most recent
training over 365 days ago).

4.2. Results

Overall, we find no evidence that annual security aware-
ness training correlates with reduced phishing failures.
Specifically, based on the results of prior work (§ [2.1)),
we assume that if annual training provided anti-phishing
knowledge, then employees who have recently completed
training should have lower failure rates than users who took
the training long ago. In particular, prior work has shown
that users’ scores on security knowledge quizzes improves
shortly after taking awareness training, but that their per-
formance reverts to their pre-training levels after a few
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Figure 3: Average phishing failure rate based on the number of days (in 30-day intervals) between when a user completed their annual
security awareness training and when they received a phishing email each month. Figure [3a) shows this temporal relationship based on
user performance for each month in our study, and Figure [3B] shows this relationship broken down for each phishing email lure. Although
some fluctuations exist across different months and phishing lures, the overall trend (shown as the dashed, black average line) shows no
strong relationship between how recently users completed their annual training and their failure rate with simulated phishing (§ .

months [35]]. Because the first employment dates of users
vary over the years, each month of phishing campaigns has a
naturally-induced range of times for how recently users have
completed their annual training. This distribution allows us
to study whether users who have recently completed the
awareness training have lower phishing failure rates.

We constructed a GLME model (§ [3.1I) to examine the
temporal relationship between failure rate and days since
completion of annual security training. Our model treats
the failure of a user for a given month as the key out-
come, defined as a binary variable, and the main predictor
variable is the number of days since completion of annual
security training. We include the following confounders in
our model:

o the phishing lure (categorical, e.g., “Login Account”),

o the order in which a user received phishing emails
(“track”: integer 1-4),

« seasonal differences (e.g., which month a user received
a particular phishing message: integer 1-8), and

« how many times a user had previously failed (integer).

Additionally, we included a random intercept in our
model to account for the repeated measures (multiple
months of data) from each user. Ultimately, our model shows
no significant association between the time since a user last
completed training and their likelihood of failing a phishing
simulation (OR = 0.998 per 30 day increase, 95% CI: (0.996,
1.000), P = 0.06).

Visually, Figure [3a] shows the average phishing failure
rate as a function of the number of days that have elapsed
since users last completed their annual training (in 30-day
intervals). The bold dashed line shows the average failure
rates for all users combined. Reflecting the statistical results,

the average failure rates for all users are independent of
the number of days since employees completed their annual
security training. As an example, consider the extreme ends
of the time range: (i) users who have completed their
annual training within a month before receiving a simulated
phishing message, and (ii) users who are non-compliant and
have not done their annual training for over a year. We
observe no significant difference in phishing failure across
all months. The lighter background lines show the propor-
tion of employees who failed the simulated phishing for
each month of the study. Different months have significantly
different failure rates due to the nature of the lures used in
the phishing campaigns for those months (Table [I). While
individual months show some variations that average out
when combined, the trends remain the same. Independent
of the phishing lures used, failure rates are consistent across
the times since completing the annual security training.

Figure [3b] shows a similar graph, but the background
lines show the failure fraction for each phishing lure in our
study. Although a few individual phishing lures show some
differences across the time ranges, the majority of phishing
lures and the overall trend show commensurate failure rates
over time. Furthermore, as discussed above, our GLME
model finds no relationship between phishing failure and
how recently users completed their annual training, while
controlling for potential confounders that could account for
the small fluctuations in a few of the lines.

5. Embedded Phishing Training

In this section we use statistical modeling to explore
the extent to which embedded phishing training helps em-



Phishing Lure Control  Generic Static  Generic Interactive  Contextual Static  Contextual Interactive
Login Account 3.44% 1.14% 0.97% 1.27% 1.13%
Outlook Pwd 1.62% 1.72% 1.85% 2.41% 1.52%
John Davis 9.56% 7.01% 6.4% 6.38% 7.45%
Docusign 11.06% 9.98% 10.05% 10.2% 9.75%
OneDrive Medical 9.89% 9.37% 9.25% 8.54% 9.16%
Open Enroll 9.02% 6.67% 7.01% 6.68% 6.76%
Vacation Policy 31.02% 30.58% 30.58% 31.99% 29.85%
Traffic Ticket 20.39% 20.07% 17.25% 16.37% 19.37%
Building Evac 11.67% 8.25% 8.55% 8.4% 9.32%
Dress Code 29.96% 27.01% 26.98% 27.41% 26.88%

TABLE 2: Failure rate for each phishing lure across all users in each training group (§ who received the corresponding phishing
lure. The average difference between the control group and the training groups across all phishing emails is 1.7%.

ployees avoid phishing attacks in practice at UCSD Health.
We also use insights from our analysis to provide one ex-
planation for reconciling seemingly conflicting results from
prior studies. Based on the use of randomized controlled
trials and our statistical models, we find that, in aggregate,
users in the four training groups do have a statistically lower
failure rate than users in the control group (§[5.2). However,
our analysis indicates that this security improvement is quite
small: on average, users in the training groups have only a
1.7% lower failure rate than those in the control group, and
for several phishing campaigns, at least 10% of users in
every group failed the simulated attack.

5.1. Analysis Overview: Embedded Training

Intuitively, if any training group led to improved security
knowledge and phishing avoidance, then users in that train-
ing group should outperform the control group’s users across
each of the phishing simulations. Table [2] shows the average
failure rates for each training group on the ten different
phishing campaigns in our study. As seen in this table,
our empirical results paint a complex picture of embedded
training’s efficacy.

On one hand, each of the training groups outperform
the control group across most of the phishing campaigns.
For example, on the “Login Account compromise” phishing
lure, most of the training groups have a 3—4x lower failure
rate than the control group. However, for several phishing
campaigns, the control group and training groups fail at
equivalent rates; and, in some instances, the control group
even has lower failure rates than a few specific training
groups (e.g., for the “Outlook Password reset” phishing
lure and the “Vacation Policy” phishing lure). Additionally,
no single training group universally performs the best. For
example, users who received the Generic Interactive training
have the lowest failure rates on several phishing campaigns
(e.g., “Login Account” and “John Davis”), but in other
phishing campaigns, a different training group (sometimes
even the control group) has the lowest failure rate (e.g.,
“Open Enrollment” and “Traffic Ticket”).

To make sense of the overall picture, while controlling
for potential confounders, we again fit a multivariable gen-
eralized linear mixed effect model [15] to assess whether
any of the training programs provided improvements over

the control group in reducing phishing failure. We exclude
data from Month 1 from this model, since users do not see
the embedded trainings until after failing a simulation (and
all control and training groups have equal failure rates in
Month 1). We control for the same confounders as in our
previous model (§ .2), such as the specific phishing lures
a user received each month. As shown earlier in Table [T}
confounders like the inherent strength of different phishing
lures might have a strong impact on a user’s performance
across months. Thus, in addition to dividing users across
multiple tracks (different phishing lure orderings), statisti-
cally controlling for these confounders allows us to more
accurately understand the relationship between training and
phishing failure.

5.2. Results: Embedded Training

Based on the results of our multivariable GLME model,
a user in a training group was 9.5% less likely to fail
a phishing simulation than a user in the control group
(OR = 0.905, 95% CI: (0.863, 0.950), P < 0.001). How-
ever, despite this statistically significant improvement, we
emphasize that the overall magnitude of improvement is
small. As shown in Table 2, in absolute terms across all
users, the best performing training groups only have a 1-
4% lower average failure rate than the control group for
most simulated phishing attacksE] Moreover, we observe that
all of these groups still have failure rates of over 15% for
several phishing simulations, and that some phishing lures
achieve over 25% click rates. Such failure rates significantly
overshadow the improvements provided by the training:
better phishing lures increase failure rates much more than
the training approaches decrease them.

5.3. Differences from Prior Work

In the context of prior work, our results paint a more
complicated picture about the efficacy of training. As dis-
cussed in Section 2] most prior studies have found that

2. Note that the odds ratio from our model reports the relative reduction
in a user’s likelihood of failure (9.5%), which translates to a 1.7% absolute
difference in the full population’s aggregated average failure rate.



Generic Contextual
Statistic Static  Interactive Static  Interactive
Sessions w/ 0 sec  39.7% 51.3% 37.3% 44.3%
25th percentile 0 sec 0 sec 0 sec 0 sec
50th percentile 7 sec 0 sec 10 sec 6 sec
75th percentile 19 sec 24 sec 27 sec 48 sec
90th percentile 34 sec 70 sec 52 sec 101 sec

TABLE 3: Summary of the time spent on different embedded
training sessions across all phishing campaigns.

phishing training can help users avoid future attacks. How-
ever, we note that these studies focused primarily on simu-
lated lab environments with voluntary, non-enterprise users
operating outside of their typical working environment.
In contrast, studies such as [7], [27], [28] that employed
controlled, randomized designs (which better account for
confounding variables, such as differences in the inherent
strength of phishing lures) suggest that training can make
users more vulnerable to future attacks, or at best, provide
small overall improvements to users’ future failure rates.

Our study aimed in part to clarify this discrepancy,
and ultimately aligns with results that question the efficacy
of training. Although we observe a statistically significant
improvement for users who receive training, the magnitude
of this improvement is very small (on average a 1.7% lower
failure rate). Like Lain et al. [28] and Caputo et al. [7],
our study involves real-world users receiving the phishing
simulations in-situ with a randomized controlled experiment
design. Additionally, going beyond prior efforts, our statis-
tical analysis explicitly accounts for a variety of potential
confounding factors. This experiment design could explain
why our results show only minimal benefits from training, as
compared to much prior work. In the following section, we
present analysis results that provide additional explanations
for why such differences exist across the literature.

6. Embedded Training Engagement

Both earlier work and our work differ in several key
conclusions about phishing training (e.g., some prior work
shows large benefits to training [23|], while others show
no benefit or worse security outcomes [28]). This section
aims to provide one explanation for these differences by
understanding how variations in the design of different
studies manifest in real-world user behavior and outcomes.

In particular, studies that show more negative results for
training efficacy (e.g., our work and the work by Lain et
al. [28]]) often involve enterprise users receiving phishing
emails and training in their natural real-world environment.
Earlier work that pioneered the idea of embedded training
evaluated its efficacy in lab settings with dedicated volun-
teers. In these simulated settings, users often spent several
minutes reviewing training material (e.g., in one study users
in the training groups spent 15 minutes participating in
training [40]). However, in the real-world, employees are
not specifically interested in receiving anti-phishing training
and can simply exit out of the embedded training website.
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Figure 4: The distribution of the amount of time spent on each
training program across all phishing training sessions (all instances
of a training group user failing a phishing simulation).

To investigate this factor further, we analyzed the time
users spend in-the-wild on embedded phishing training, a
key variable whose impact is understudied in prior work.
For this analysis, we exclude users in the Control group
since they do not receive actual training content. Our results
suggest that users in real-world settings spend very little
time on the training websites, with significant portions of
users leaving the training website immediately. Digging
deeper, this lack of engagement does not appear to stem
from training fatigue (from multiple months of phishing),
but most likely stems from other factors (such as an inherent
disinterest in prioritizing security as a computer task).

However, we find that for interactive training, users who
fully complete a training session have a lower likelihood
of failing future phishing exercises than those who do not.
This same relationship does not exist for users who receive
static training. In fact, consistent with recent work [28]],
users in static training groups who complete more train-
ing sessions have a higher likelihood of failing phishing
simulations (§ [6.2). Collectively, these results suggest that
organizations should carefully consider how users interact
with embedded training in practice and the training content
they deploy.

6.1. Do users engage with training in-the-wild?

Training time: Table [3] and Figure |4 summarize the dis-
tribution of how much time users spent on the embedded
training websites across all training sessions (all instances of
users failing a phishing simulation across all eight months).
These statistics show that only a very small fraction of
users engage with the training material. In the most extreme
case, between 37-51% of all training sessions have no
engagement at all: users simply close the page immediatelyE]

3. The training pages collect these measurements via Javascript, so it is
possible that the presence of Javascript blockers could contribute to some
of the training sessions that last 0 seconds.



Training Completion Rate
Overall 24.0%
Generic Static 32.6%
Context Static 24.2%
Generic Interactive 15.6%
Context Interactive 23.5%

TABLE 4: The average completion rate of embedded training
sessions across the study’s duration (§ @

Furthermore, in over 75% of the training sessions, users
spend less than 1 minute on the training page, and this
proportion exceeds 90% for both static training groups.

These statistics suggest that, in practice, users spend very
little (if any) time interacting with the educational material.
Given this short duration, it is unclear how much educational
value and defensive knowledge embedded security training
provides, beyond increased paranoia or mere “contact expo-
sure”: the primary training users receive is simply the aware-
ness that phishing exists and some implicit learning of the
kind of phishing lure that they just failed. This small amount
of time spent on the training material likely contributes to
the small protective effect size in our results, and the similar
average difference between the four types of training we
studied. It also provides one explanation for why earlier
work involving voluntary users in lab settings have much
more positive results about the efficacy of training than
more recent work studying training in real-world settings.
For example, volunteer users in lab settings willingly and
specifically spend time on training—potentially leading to
better learning and outcomes—whereas the majority of users
in-the-wild do not engage with the training material with
similar interest or focus.

Training completion: Each training session includes a
button at the end of the material that users can click to
officially acknowledge and thereby “complete” the training
(Figure [I] shows an example at the bottom of the webpage).
As summarized in Table [] users completed 24% of the
training sessions across the duration of our study.

Similar to the fraction of users who immediately exit
training, the users assigned interactive training content com-
pleted the training at much lower rates than those who
received static training. Since the training completion button
only appears at the end of the content, only users who spend
the time to answer every question in the interactive training
can successfully complete the training.

Training fatigue: Because this study analyzes the results
of eight months of simulated phishing campaigns, the low
user engagement with training might result from accumu-
lating fatigue: as users see more training, they become less
interested in engaging or completing the sessions. However,
we found no evidence of this phenomenon.

Specifically, across our entire study, training group users
failed 15,332 phishing exercises. Each failure produced a
training session, where 9,049 sessions corresponded to the
first time a user ever saw training and 6,283 sessions corre-
sponded to “repeat” sessions, where a user had previously

received at least one training session before. First-time
training sessions had a completion rate of 23% whereas
“repeat” training sessions had a slightly higher completion
rate of 24%. Since fatigue should create a lower completion
rate for repeat training sessions, the similar completion rates
suggest that training fatigue is not the primary reason for
low user engagement with the training material. Instead, the
small amount of participation time and low completion rates
likely occur because users view security as a secondary goal
when using their devices (as prior work from usable security
suggests more broadly [1f, [[12f, [17]).

6.2. Training Engagement and Future Failure

Although many users spent very little time on embedded
training, a small portion of users had greater engagement
with the training material. For example, in 5.5% of training
sessions, users spent over 90 seconds on the webpage. In
this section, we present a statistical analysis that shows users
who received interactive training have a lower likelihood of
failing a future phishing simulation if they have previously
completed a training session. However, this result does not
hold for static training, and in the extreme cases, users who
complete multiple prior static training sessions have a 15%
higher chance of failing a future phishing exercise for each
additional training they complete.

Similar to earlier analysis (§ and § 5.2), we con-
structed six generalized linear mixed effects models to an-
alyze the relationship between phishing failure and a user’s
engagement with training material. Specifically, we ran two
sets of models, one set with and one set without an interac-
tion term between training type (static vs. interactive) and a
key user engagement variable. For each model set, we ran
three models to examine the association between failing a
phishing email and the following user engagement variables:
(1) whether the user has officially completed a training in
the past (binary: yes or no), (2) the total number of training
sessions the user has previously completed (integer), and
(3) the cumulative time users spent on training in the past
(integer: in 30 second increments). In all six models, we
control for the same set of confounding variables as we did
in Sections and These models only compare data
from users in the training groups, since users in the control
group do not receive training content and thus do not have
meaningful data about these key engagement variables, such
as whether they “completed” the training.

Table |5 summarizes the statistical results from our two
sets of GLME models, where each row corresponds to the
key findings for one user engagement variable from our
models. The “Overall” column corresponds to the results
from our models that do not include an interaction term, and
the last two columns (“Static” and “Interactive”) show the
results derived from the models that include an interaction
between training type and the engagement variable. Odds
ratios where the associated 95% confidence interval (CI)
does not include 1.0 in its range are statistically significant
with an a = 0.05 [15]]. Collectively, these models show two
interesting results: (1) only users who complete interactive



Overall (n = 8831, 60486)

Static (n = 4406, 30210) Interactive (n = 4425, 30276)
OR 95% CI OR 95% CI

Model OR 95% CI
1) Completed at least 1 Prev. Train. 0.963 (0.903, 1.027)
2) Cumul. # Prev. Train. Completed 1.092 (1.034, 1.153)*
3) Cumul. Time Train. (30s intervals)  1.008 (0.992, 1.025)

1.059  (0.978, 1.146) 0.809 (0.730, 0.896)*
1.185  (1.110, 1.266)* 0.934 (0.856, 1.020)
1.046  (1.017, 1.075)* 0.995 (0.977, 1.014)

TABLE 5: Summary of the key findings from each of our multivariate GLME models studying the association between a key training
engagement variable and the likelihood of future phishing failures (§ [6.2). Only the results from our fully adjusted models are displayed
(adjusted for number of previous failures, month, phishing lure, and track). Sample sizes are given as n = # of users, # of records. We
ran Models 1-3 with main effects only (reported in the “Overall” column), as well as with an interaction between static vs. interactive
training groups and the key engagement variables (the “Static” and “Interactive” columns report the results derived from this second
model set). Results with an asterik indicate statistically significant odds ratios, with an o« = 0.05, since the 95% confidence intervals (CI)

do not include a value of 1 within their range [|15].

trainings have significantly better future performance, when
compared to users who have received training but do not
complete it (OR = 0.809, 95% CI: (0.730, 0.896)); and (2)
users who have completed multiple static training sessions
have an increased likelihood of failing a phishing exercise
(OR = 1.185, 95% CI: (1.110, 1.266)).

Our data shows that an interactive training user had
a 19% reduction in phishing failure rates if they previ-
ously completed the training (OR = 0.809, 95% CI: (0.730,
0.896)). On one hand, this statistical improvement from
interactive training might indicate that completing the train-
ing provided useful security knowledge and education. On
the other hand, this association might be the result of a
self-selection bias, where some underlying differences exist
between the population of users who choose to complete
the training versus those who receive the training but do not
complete it; in this latter case, the statistical improvement
would correspond to a difference between these two user
groups and not an effect of the training.

Our models provide some evidence that the improvement
stems from the former reason (educational benefits). In
particular, our models show no statistical improvement for
users who have completed a static training session versus
those who receive static training but refuse to complete it
(OR = 1.059, 95% CI: (0.978, 1.146)). If the reduction in
phishing failure rate was solely due to a self-selection bias,
then we would expect to see a lower likelihood of failing
for the users who choose to complete static training as
well. However, our model does not show this result, which
suggests that completing an interactive training may provide
beneficial security knowledge to users, since self-selection
bias alone does not correlate with improvement for other
types of training.

Furthermore, our second model (row 2 in Table @
shows that users who complete multiple static training ses-
sions have a 18.5% increased likelihood of failing for each
additional training they complete (OR = 1.185, 95% CI:
(1.110, 1.266)). In other words, completing multiple static
training sessions correlates with increasingly worse security
outcomes. However, we do not see a similarly negative
outcome for users in the interactive training groups (OR =
0.934, 95% CI: (0.856, 1.02)). This increase in harm from
this specific training style aligns with the findings by Lain
et al. [28]], which involved a training webpage similar to

our static training sessions, where users in their study who
received this type of training performed worse than users in
a control group.

As before, this negative correlation may result from
self-selection bias: for embedded training, only users who
naturally fail multiple times have the ability to complete
multiple training sessions. And, failing more times means
these users have some characteristics that make them more
susceptible to fall for phishing attacks than users who fail
fewer simulations. However, the fact that we only observe
an increase in harm for users who complete multiple static
training sessions, but not for interactive training sessions
indicates instead that differences in the training content itself
may contribute to worse performance.

Collectively, our analysis suggests that completing in-
teractive forms of training may provide additional improve-
ments in the security knowledge of users (anti-phishing
awareness), but static forms of training (e.g., an information
webpage) do not provide the same benefit. Additionally, our
models (Table [5) show no beneficial association between
failure rate and completing multiple training sessions (OR =
1.092, 95% CI: (1.034, 1.153)) or spending more cumulative
time on training (OR = 1.008, 95% CI: (0.992, 1.025)),
which suggests that naively forcing greater training com-
pliance and more time-on-page does not lead to a reduction
in phishing susceptibility in many cases.

6.3. Training Engagement Summary

Altogether, the models and analyses from this section
help explain why prior work observes such large discrepan-
cies in the efficacy of embedded phishing training. In par-
ticular, our measurements show that very few users engage
with embedded training in-the-wild, e.g., users complete
only 15-24% of interactive training sessions (Table [).
This finding helps explain why some results, which involve
volunteer users or lab settings with naturally higher training
engagement, may have much more positive results about
training efficacy.

Additionally, the content and style of training may help
explain in part why some studies, such as Lain et al. [28]],
find a correlation between users who receive training and
an increased (harmful) likelihood of failing future phishing
exercises. In our study, for example, the small subset of users



who complete multiple static training sessions have a higher
likelihood of failing future simulations than those who do
not complete the training. The same negative correlation
does not exist for users who receive interactive training.
In contrast, the subset of users who fully complete one of
these interactive training sessions have better future security
outcomes than those who do not; however, only a small
fraction of users actually complete an interactive training
session and experience this increased benefit.

7. Discussion

Today nearly every enterprise mandates employee cyber-
security awareness training, and in particular anti-phishing
training, as a defensive “best practice”. The prevalence of
these training efforts stems from both a long line of prior
research arguing for its efficacy, combined with industry and
regulatory pressures to codify verifiable compliance actions
into best practice frameworks [31]]. Unfortunately, when
evaluated using data from real-world, large-scale random-
ized controlled trials, the promised benefit of these programs
falls short.

First, we have shown that annual cybersecurity aware-
ness training does not inoculate our organization against
phishing attacks, nor does it provide significant protection
towards that goal. Employees who recently completed such
training, which has a significant focus on social engineer-
ing and phishing defenses, have similar phishing failure
rates compared to other employees who completed their
awareness training many months ago (§ ). To the extent
this result generalizes beyond UCSD Health, the lack of
any meaningful impact on testable outcomes suggests that
organizations should reconsider the value of this activity.

Second, our work highlights several operational chal-
lenges and subtleties in embedded anti-phishing training.
Crucially, by its very design, only users who fail a phishing
simulation receive embedded training. As a result, only
a limited subset of an organization actually receives such
training during each embedded phishing exercise. By pro-
viding no education for non-failing users, this design im-
plicitly assumes that users who do not fall for one phishing
lure do not need training to protect against future attacks.
Unfortunately, our results show that the majority of users at
our organization will eventually fall for a simulated phishing
attack given enough time (§ . For example, hundreds of
users who have successfully avoided seven prior phishing
simulations eventually fail on the eighth simulated attack.
These results suggest that embedded phishing training offers
an inefficient means to educate users, nor does it accurately
identify when and which users need training. This also sug-
gests that studies with only one or a few phishing exposures
very likely underestimate population-level susceptibility.

Finally, although our study finds that embedded phishing
training correlates with a statistical reduction in subsequent
clicks on phishing links, the size of this improvement pales
in comparison to the efficacy of phishing attacks (§ [5.2). In
particular, while some phishing lure only fool small numbers
of users, nearly half of the phishing campaigns in our study

convinced over 10% of their recipients to click on a link:
more than double the 1-4% absolute reduction provided by
training on different phishing lures. Thus, our results suggest
that organizations like ours should not expect training, as
commonly deployed today, to substantially protect against
phishing attacks — the magnitude of protection afforded is
simply too small and employees remain susceptible even
after repeated training.

Reconciling Contradictory Results in the Literature: In
the context of prior academic results, our work helps explain
several seemingly contradictory findings. First, our work
highlights the importance of conducting controlled, random-
ized comparisons to understand the efficacy of training.
Because phishing exercises can have dramatically different
success rates based on their message content (e.g., 2%
vs. 30%), studies cannot simply compare a population’s
performance over time in isolation, since increases/decreases
in failure rates may be entirely dominated by the strength
of the phishing lures. This subtlety may explain why some
prior work reports much higher efficacy of training than
studies like ours that involve randomized, controlled trials.

Second, we provide insights on how much users actually
engage with embedded phishing training in-the-wild, such
as the time users spend on the training. In practice, the
majority of the users in our study spend less than 30 seconds
looking at embedded training content and less than one-
third of users complete the training. This limited real-world
engagement could help explain the difference between the
negative results from our study and Lain et al. [28]], when
compared to prior work showing positive benefits from users
in settings where training is supervised (e.g., in a laboratory
experiment).

Third, our results also suggest that the potential benefits
users can gain from training depend on its content and
delivery method, but may incur diminishing returns. For
example, similar to Lain et al. [28]], we find that users
who complete multiple szatic training sessions actually have
worse phishing failure rates than those who do not complete
the training. In contrast, users who complete interactive
training sessions have a statistically lower likelihood of fail-
ing future phishing simulations (§ [6.2). However, regardless
of modality, our data does not show any further reductions
in failure rate from completing multiple training sessions.

Limitations: Our study’s data comes from a single health-
care organization. Although this in-situ data spans over
19,500 users across a diverse set of job roles, the results
from our data alone may not generalize to every organization
and/or economic sector. However, our findings, questioning
the efficacy of embedded phishing training, align with the
results of other work that also used randomized controls [7],
[28]], which studied different organizations in different eco-
nomic sectors with different embedded phishing training
platforms and material.

For both of our analyses, on annual security awareness
training and embedded phishing training, our control groups
are not exact equivalents to users receiving no training. In
the case of annual training, we did not have an explicit



control group (since users must take the training due to
institutional policy). Nonetheless, the lack of any significant
relationship between how long ago a user completed this
training and their performance on simulated phishing emails
suggests that the community should re-examine whether
such training, as delivered today, provides meaningful secu-
rity benefits. For our embedded phishing training, the control
groups received an error webpage, which may allow some
users to implicitly gain knowledge about phishing attack
avoidance (by virtue of receiving a phishing email and some
opaque feedback if they clicked the link). Although this
design is not identical to a user receiving no training, the
amount of explicit information conveyed to control group
users is small.

Because UCSD Health has multiple avenues for users
to report potential phishing messages, we did not study
whether training improves phishing reporting speeds within
the organization. For example, prior work [28]] suggests that
against mass-phishing emails, user reporting might serve as
an effective defense, since a subset of users rapidly reports
malicious emails. Future work could explore whether train-
ing helps reinforce or improve these reporting dynamics;
however, such work should also weigh whether the resulting
changes lead to a net improvement for an organization’s
security, given the potential costs they impose on an or-
ganization’s IT staff (e.g., responding to user reports and
increases in false positive reports [8], [32], [38]).

Finally, although our study and others [14] use link
click-through as its metric for phishing failure, user perfor-
mance may differ based on other metrics, such as whether
they would also enter their credentials on the subsequent
phishing webpage and/or whether a user would download
and execute an attachment.

Future Directions: Assuming our results, and the con-
curring findings of other work measuring real-world effi-
cacy [7]], [28], generalize to most organizations, our work
suggests that existing cybersecurity training methods are
unlikely to offer practical value towards improving phishing
outcomes. Any aspirational attempt to redeem training will
need to address several different challenges.

First, existing mechanisms fail to deliver useful training
to users. Mandatory annual training offers little impact and
embedded training, while in some cases effective, engages
only a small fraction of users. Thus, any attempt to improve
training must find a way to achieve the uptake of mandatory
training, without losing the “teachable moment” experience
of embedded training. For example, future work could con-
sider whether adding stronger incentives, either rewards or
punitive measures, could improve users’ engagement with
the training material. However, such research should care-
fully weigh the ethical and legal implications of this work
(e.g., subjecting users to different incentives); and we note
that recent studies suggest that making training mandatory
or adding positive incentives does not improve the efficacy
of training [27]. Furthermore, both anecdotally and based
on the results of our mandatory annual training, certain
incentives (such as requiring users to complete training) do

not always lead to higher intellectual engagement, but may
instead incentivize subtle compliance strategies where users
simply complete the requirement without actively engaging
with the material.

Second, the only modality we identified offering sig-
nificant improvements in outcomes was interactive training
taken to completion. In our study, only a small subset of
individuals completed such training. However, it is an open
question if a larger cohort could be enticed to similarly
engage with such training to completion and if these same
effects would generalize to this larger population. If so, this
change could produce a modest (19%) but significant im-
provement for all users. However, it is also entirely possible
that the improvement we observed was due to selection
effects and that the few users who voluntary completed the
interactive training might have have distinct characteristics
that make such training more effective for them (e.g., that
they are more compliant and are willing to prioritize acquir-
ing computer security knowledge when directed to).

Finally, we cannot disprove the notion that there may
be vastly distinct training methods or content that might
produce significantly better results (e.g., individualized, real-
time training delivered by live instructors who can offer
tailored explanations about a user’s misunderstandings).
However, in addition to the challenge of discovering these
new methods, to become practical they must also be eco-
nomically feasible to deploy at scale.

Absent such advances, our results undercut the funda-
mental notion that anti-phishing training is a cost-effective
endeavor. For an organization with finite resources, it seems
likely that focusing on technical countermeasures may offer
a better return on investment. In particular, hardware multi-
factor authentication (MFA) and/or relying on password
managers to fill in credentials only on the correct domain
offers strong protections against certain classes of phishing
attacks (albeit with a number of operational and usability
challenges that deserve further attention [34]).

8. Conclusion

In this work, we analyzed eight-months of simulated
phishing campaigns at a large healthcare organization to
understand the efficacy of two ubiqituous forms of security
training: annual cybersecurity awareness training and em-
bedded phishing training. Through a combination of careful
statistical modeling and randomized controlled comparisons,
our study finds that both types of training, as commonly de-
ployed today, are unlikely to improve widespread protection
against phishing attacks. Although embedded training has a
statistical correlation with a lower phishing failure rate, the
success rate of many phishing attacks dwarfs the marginal
improvement provided by training.

Our paper also investigates understudied aspects of em-
bedded phishing training, such as how much users engage
with training content in-the-wild and whether greater en-
gagement with the training material correlates with im-
proved outcomes. In doing so, we shed new light that helps
reconcile seemingly contradictory results in prior literature,



and provides guidance on how future studies should struc-
ture their experiments and analysis. In particular, future
work should focus on using randomized controlled studies,
employing training styles that provide greater opportunity
for learning (e.g., interactive), and study ways to naturally
increase user engagement with the material. Combined with
the bulk of empirical evidence from other studies involving
real-world, controlled experiments, our results suggests that
organizations should not expect large anti-phishing benefits
from either annual security awareness training or embedded
phishing as commonly deployed today.
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Appendix A.

Phishing Messages and Training Programs

Phishing Messages: For our phishing campaigns, we used
templates from Proofpoint’s Drive-By campaign library. We
provide a brief summary of message in each lure below,
along with the exact name of the template in Proofpoint’s
library (as of October 2024):

1) Outlook Pwd: This campaign purports to come from

the IT Security team and states that the user’s account
has been suspended due to suspicious activity. The user
must click on a link to reset their account. (Proofpoint
Title: “Outlook Account Reset”)


https://www.marsh.com/en/services/cyber-risk/insights/using-cybersecurity-analytics-to-prioritize-cybersecurity-investments.html
https://www.marsh.com/en/services/cyber-risk/insights/using-cybersecurity-analytics-to-prioritize-cybersecurity-investments.html
https://www.marsh.com/en/services/cyber-risk/insights/using-cybersecurity-analytics-to-prioritize-cybersecurity-investments.html
https://csrc.nist.gov/pubs/sp/800/53/r5/upd1/final

Click on each of the red flags below to learn more.

Subject: Re: COVID-19 &)

e From: HR <hr@yourorganization.com> c
Reply-To: HR <hr@fakeaddress.com>
To: you@yourerganization.com )

CC: maxine@adifferentorg.net, sergio@college.edu
Date: Monday, June 9, 4:30 AM &

”~
L—-l COVID-19 Policy At
=4 2MB

The following organization policy has been updated:
COVID-13 - Return to Work Guidelines

G O 9>

Please read and understand the updated guidelines regarding a COVID-free return to the office. It is URGENT that you read this as soon as c

possible!!!

Click HERE or download the attachment to read the policy. c

You are require to enter your username and password before viewing in orfer to register your acknowledgement of the policy update.

Figure 5: An example exercise included in the annual cybersecurity awareness training (§ .

2) Login Account: This campaign appears to come from
IT Support. It alerts the user that the IT department
has discovered their password was stolen by hackers.
The user must click on a link to reset their password
to avoid having their access revoked. (Proofpoint Title:
“Login Account Compromised”)

3) Open Enroll: This campaign purports to comes from
Human Resources. It notifies users that the Open En-
rollment for benefits is approaching and provides a
number of benefit related links for the user to click.
(Proofpoint Title: “Open Enrollment Update”)

4) Shared Doc (Microsoft): This campaign comes from
a random sender and notifies the recipient that the
sender has shared a document with them via OneDrive.
The user can click on a link to “view” the document.
(Proofpoint Title: “OneDrive Document Waiting”)

5) OneDrive Medical: This campaign comes from a
random sender with a “Dr.”” prefix. The email has
OneDrive logos and notifies the user that a file has
been shared and needs to be reviewed asap. (Proofpoint
Title: “OneDrive Medical Document”)

6) Docusign: This campaign comes from a random sender,
with a domain that sounds like a financial institution.
The email body mimics a DocuSign email with a
link to review the shared documents. (Proofpoint Title:
“Docusign document for review”)

7) Building Evac: This campaign comes from the HR De-
partment and notifies the user that there is an updated
building evacuation plan. It provides a link for the users
to view the plan and states that the user must digitally
sign an acknowledgement of the new plan. (Proofpoint
Title: “Building Evacuation Plan”)

8) Traffic Ticket: This campaign comes from a generic
traffic enforcement entity. It states that the user has a
speeding ticket and must click a link to view and pay
the fine to prevent it from increasing. (Proofpoint Title:
“Speeding Violation™)

9) Dress Code: This campaign comes from a random
sender from the human resources department. It says
that a new dress code policy will go into effect and
provides a link to view the new policy, along with
a warning of disciplinary action for violations in the
future. (Proofpoint Title: “Dress Code”)

10) Vacation Policy: This campaign comes from human
resources and notifies the recipient that there is a
new vacation and sick time policy. (Proofpoint Title:
“Updated vacation and sick time policy”)

Phishing Training: For the study’s four training programs,
we used two stock trainings from Proofpoint’s “Teachable
Moment” library of embedded training materials: the “Stan-
dard: Education (Drive-by)” and “Interactive URL Guide”
for our generic static and interactive trainings respectively.

The static training stated that the user fell for a phishing
simulation, that the attacker tried to make the user click
on a malicious link, provided four tips for avoiding future
attacks, and included a link at the bottom of the webpage to
“acknowledge” and close the training. The four tips asked
users to check for grammar/spelling errors, check the email
language for an unusual tone, hover over any links, and use
a “reputable source” to “verify the link”.

The interactive training also notified users that they fell
for a phishing simulation, and then launched users into
an interactive series of training webpages. The webpage
displayed the same sample phishing email on each page,
but asked the users to a new question on each page that
corresponded to a phishing warning sign (such as typos, lack
of a personalized greeting, and whether the email contained
a dangerous action like a link to click).

For our two contextualized / customized training pro-
grams, we modified these two trainings to include a consis-
tent set of five tips to spot phishing attacks, selected from
a list of advice from industry and government websites:
checking whether the email comes from an unusual sender,



contains a dangerous action (such as clicking a link or
attachment), includes threats or urgent language, uses a
generic greeting without any personalization/naming of the
user, and/or contains grammar or spelling errors.

In the contextual static training, we modified Proof-
point’s training template to include an image of the phishing
email the recipient received. Our training then highlighted
places in the email where a piece of advice applied (one of
the five warning signs), and included a 2-3 line summary of
which warning signs were present above the “acknowledge”
button.

For the contextual interactive training, we replaced the
sample phishing email with the actual phishing email a user
received. We then modified the question on each slide to
correspond to ask about the presence of one of the five
warning signs, and to grade and display the correct answer
accordingly.

Appendix B.
Additional Figures

Figure [5] shows an example of one part of the annual
cybersecurity awareness training deployed at UCSD Health.

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper evaluates the effectiveness of phishing sim-
ulations using an in-situ randomized controlled experiment
with 19,500 employees in an organization over eight months.
It was found that embedded training had no significant effect
on the security behavior of the trained employees.

C.2. Scientific Contributions

« Independent Confirmation of Important Results with
Limited Prior Research

o Provides a Valuable Step Forward in an Established
Field

o Addresses a Long-Known Issue

C.3. Reasons for Acceptance

1) This work presents the most extensive large-scale eval-
uation of phishing simulations to date. It confirms a
previous study by Lain et al. that cast doubt on the
effect of phishing simulations against common belief.

2) The authors were also the first to perform a well-
designed, large-scale, randomized, controlled experi-
ment about phishing simulations in an organization.
This method has multiple advantages over lab-like
studies previously used to analyze anti-phishing user
behavior, as it gatherers the data in the real-world
context of the users (employees).

3) The paper has a real-world impact regarding cyberse-
curity training for employees. It questions the “best-
practice” of embedded training in phishing simulations
that are rolled out by multiple organizations.

C.4. Noteworthy Concerns

1) The authors cannot provide the raw data (due to the
organization’s policies). Hence, independent confirma-
tion of the statistical tests is not possible.

2) As with every in situ study, some findings might be
tied to the specific context of the organization they are
carried out at (a health company in this case).
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