
A Search Engine Backed by Internet-Wide Scanning

Zakir Durumeric† David Adrian† Ariana Mirian† Michael Bailey‡ J. Alex Halderman†

† University of Michigan ‡ University of Illinois, Urbana Champaign
{zakir, davadria, amirian, jhalderm}@umich.edu mdbailey@illinois.edu

ABSTRACT
Fast Internet-wide scanning has opened new avenues for
security research, ranging from uncovering widespread vul-
nerabilities in random number generators to tracking the
evolving impact of Heartbleed. However, this technique still
requires significant effort: even simple questions, such as,
“What models of embedded devices prefer CBC ciphers?”, re-
quire developing an application scanner, manually identifying
and tagging devices, negotiating with network administra-
tors, and responding to abuse complaints. In this paper, we
introduce Censys, a public search engine and data processing
facility backed by data collected from ongoing Internet-wide
scans. Designed to help researchers answer security-related
questions, Censys supports full-text searches on protocol
banners and querying a wide range of derived fields (e.g.,
443.https.cipher). It can identify specific vulnerable de-
vices and networks and generate statistical reports on broad
usage patterns and trends. Censys returns these results in
sub-second time, dramatically reducing the effort of under-
standing the hosts that comprise the Internet. We present
the search engine architecture and experimentally evaluate
its performance. We also explore Censys’s applications and
show how questions asked in recent studies become simple
to answer.

1. INTRODUCTION
Fast Internet-wide scanning has opened new avenues for

empirically-driven security research, as evidenced by the re-
cent surge in publications based on the technique (e.g., [1, 7–
11,13,14,18,19,24–29,38]). Yet while tools such as ZMap [20]
have reduced the time required to conduct large-scale port
scans, collecting meaningful data through Internet-wide scan-
ning has remained a specialized and labor-intensive pro-
cess. Answering simple questions, such as “What fraction
of HTTPS servers prefer forward-secret key exchange meth-
ods?”, can take weeks of implementation and debugging,
reducing the time security researchers have to focus on more
important questions. In this specific case, the researcher

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
ACM 978-1-4503-3832-5/15/10.
DOI: http://dx.doi.org/10.1145/2810103.2813703.

would need to develop a high-performance application scan-
ner to make HTTPS connections to hosts listening on port
443, test and fix problems with hosts that do not fully follow
the TLS specification, run the actual scan, and then process
many gigabytes of resulting data.
Before beginning this process, security researchers must

negotiate with their institution’s legal and networking teams
for permission to conduct the scan, coordinate with their
upstream network providers, and later respond to result-
ing abuse complaints. Many institutions (and independent
researchers) lack the network facilities or administrative
backing to perform scans. For these reasons, Internet-wide
scanning has remained the province of a small number of
research groups, which severely limits the applications to
which this powerful methodology is applied.

In order to democratize Internet-wide scanning and enable
researchers to efficiently ask questions about how security
protocols have been deployed in practice, we have developed
Censys, a cloud-based service that not only maintains an
up-to-date snapshot of the hosts and services running across
the public IPv4 address space, but also exposes this data
through a search engine and API. In contrast to existing
scanning tools, which have primarily focused on performing
host discovery, Censys immediately produces results based
on full protocol handshakes, facilitates a community-driven
approach to characterizing the exploding number of embed-
ded devices and vulnerabilities on the Internet, and requires
little or no user preparation.
To approximate a real-time “bird’s eye view” of the In-

ternet, Censys continually scans the public address space
across a range of important ports and protocols. It validates
this data and performs application-layer handshakes using a
pluggable scanner framework, which dissects handshakes to
produce structured data about each host and protocol. The
resulting data is post-processed with an extensible annota-
tion framework that enables researchers to programmatically
define additional attributes that identify device models and
tag security-relevant properties of each host. We operate
Censys transparently and expose data back to the research
community. In turn, we encourage external researchers to
contribute both application scanners (to scan additional pro-
tocols) and annotations (to identify devices or properties) to
Censys. In this way, Censys automates and centralizes the
mechanical aspects of scanning.
Censys exposes data to researchers through a public search

engine, REST API, publicly accessible tables on Google Big-
Query, and downloadable datasets. The search interface
enables researchers to perform full-text searches and query

any of the structured fields and tags produced during scan-
ning and post processing (e.g., 443.https.cipher_suite).
It supports full-text searches, regular expressions, and nu-
meric ranges, and queries can be combined with Boolean
logic. These queries can be run against a current snapshot of
publicly accessible IPv4 hosts, Alexa Top 1 Million websites,
and known X.509 certificates. After running a query, users
can interactively explore the hosts, sites, and certificates
that match their query, as well as generate statistical reports
suitable for direct use in research.
As a simple example, Censys can identify the set of hosts in

the U.S. that are currently vulnerable to Heartbleed with the
query, 443.https.heartbleed.vulnerable: true AND
location.country_code: US. From there, Censys can out-
put a complete list of matching IP addresses and graph the
distribution of the most common vulnerable device models.
These queries complete in under one second.

To facilitate more complex analysis, we publish raw appli-
cation handshakes and daily point-in-time snapshots of the
structured data. These can be queried using SQL through
publicly accessible Google BigQuery tables or downloaded
in JSON form. Censys additionally exposes data through
a public REST API that allows researchers to export raw
query results, fetch statistical data, and view the historical
state of specific hosts and networks.
We present Censys’s data collection architecture in Sec-

tion 3, explain how Censys presents data to researchers in
Section 4, and describe our deployment in Section 5. We then
illustrate Censys’s potential in Section 6 by showing how it
can be applied to easily answer a range of questions from
recent security studies, including measuring the impact of
POODLE and tracking vulnerable industrial control systems.
Internet-wide scanning has already shown great potential

for uncovering security problems and understanding the secu-
rity of complex distributed systems. By moving scanning to
the cloud, Censys dramatically reduces the effort needed to
investigate these questions, enabling researchers to focus on
asking more important questions rather than on the mechan-
ics of answering them. Further, Censys allows the security
community to increase global protocol coverage and provides
a tractable solution for understanding the increasing number
of embedded devices on the Internet. Simultaneously, it
minimizes redundant scanning by research groups and min-
imizes the incoming network traffic monitored by network
operators.
Censys is available free to the public at https://censys.io.

2. GOOD INTERNET CITIZENSHIP
As with any research conducted through active network

probing, our work raises important ethical considerations.
We carefully considered the impact of our experimental mea-
surements and disclosure of our results. When reasoning
about our impact, we considered a variety of stakeholders,
from our local institution to Internet service providers and
the owners of the remote systems. Although the community
has yet to derive robust ethical standards for active measure-
ment, our reasoning was guided by broad ethical principles,
such as those embodied in the Menlo Report [5], as well as
by the guidelines for ethical scanning set forth in the original
ZMap work [20].
We coordinated with network administrators and IT lead-

ership at our department, college, and institution, as well
as with our upstream ISP, to ensure that our scans do not

adversely impact network operations and that all support
centers can route external inquiries to our team. Second,
we signaled the benign intent of our activities. All of the
scanning hosts have WHOIS records and reverse DNS entries
that describe the intent of the scanning. Further, each scan-
ning host runs a simple website on port 80 that describes the
goals of the research, including what data we collect, and
how to contact us. Third, we invite user exclusion requests
and respond to requests within 24 hours. Fourth, all scans
perform standards-compliant handshakes; we do not send
malformed packets or handshakes.
Disclosure of scan data also raises ethical questions, since

it exposes information about potentially vulnerable systems.
To minimize harms, we deliberately choose to collect and
distribute data that is, at least in principle, already publicly
visible. Our scanners do not perform login attempts, deploy
any exploits, or try to access non-public resource paths.
Furthermore, we treat opt-out requests for scanning as a
request to be removed from the search index, which allows
remote administrators to decide whether or not to be included
in Censys’s public interface. Many network operators, after
understanding the goals of our measurement work, have
responded supportively and invited us to continue scanning
them. Finally, it is our hope that by publishing scan data,
carefully acquired and properly curated, we can reduce the
need for Internet scanning performed by other researchers,
and thus reduce the overall burden on destination networks.
In contrast, it is well established that attackers already

use Internet-wide scanning to find vulnerable machines from
botnets and bullet-proof hosting providers [17]. Thus, sys-
tems that are configured to expose data publicly are already
at risk. Censys helps level the playing field by enabling
legitimate researchers to study and enhance the security of
these hosts by providing a source of reliable and ethically
collected data.

3. COLLECTING DATA
The data that powers Censys is collected through hori-

zontal application scans of the public IPv4 address space,
which are scheduled across a pool of scan workers. In the
first step, we perform host discovery scans using ZMap [20],
complete application handshakes with responsive hosts us-
ing pluggable application scanners, and derive structured
fields (e.g., certificate subject or TLS cipher suite) from the
handshake. We save and publish the raw handshakes, but
continue further processing, validating the collected scan
data, extracting valuable fields and annotating handshakes
with additional metadata, such as device model and software
version using user-defined annotations.

The structured, annotated data is then streamed to a cen-
tral database, ZDb, which aggregates the horizontal scan re-
sults, pivoting the data and updating comprehensive records
describing individual IPv4 hosts, Alexa Top 1 Million web-
sites, as well as maintaining auxiliary collections of all found
X.509 certificates and public keys. ZDb streams changes
to downstream services and produces publishable point-in-
time snapshots of hosts and websites, as well as differential
updates to its collection of certificates and public keys.
There are several observations that led to this architecture.

First, while horizontal scans measure a single aspect of a
service (e.g., whether an HTTPS server supports SSLv3),
research questions frequently depend on multiple scans. For
example, calculating the percentage of HTTPS servers that

2

https://censys.io

Scan Assignments

Daily
Snapshots

Raw Data Download

Full-Text
Search

Structured
Data

Raw Data

Zdb

Scheduler

Scan Worker

Scan Worker

Scan Worker

Google Cloud
Storage

Google
Datastore

Elastic Search
(Lucene)

Google
BigQuery

Web Frontend
and API

Historical
Queries

Analytical
Queries

Figure 1: Censys System Architecture—Censys is driven by application scans of the IPv4 address space, which are
scheduled onto a pool of scan workers. These workers complete scans, extract valuable fields, and annotate records with
additional metadata in order to generate structured data about each host. These records are centrally managed in a custom
database engine, ZDb, which maintains the current state of every host. ZDb feeds updated records to a web front-end where
researchers can query the data.

Scheduler

ZMap ZMap

ZGrab

Shard 1 Shard 2

Responsive IPs

Annotation

Extraction

Full Handshake

Clean Data

Database

Atoms

Figure 2: Protocol Scanning and Annotation—Each
scan worker uses ZMap to perform host discovery for a shard
of the IPv4 address, and completes protocol handshakes
using pluggable application scanners. Censys extracts fields
of interest and annotates records with additional metadata.
The information from a protocol handshake is converted to
an atom—a deterministic data structure describing a specific
protocol on a host.

support SSLv3 requires a generic TLS scan and an SSLv3
scan. Similarly, a device model may only be identifiable
based on its HTTP page, but this information is useful when
studying any protocol. Therefore, despite being collected
by protocol, data should be grouped by host. Second, our
framework needs to be extensible, and facilitate community
involvement. Much of ZMap’s success is due to user con-
tributed probe modules, and we believe the same will be true
for Censys. This is particularly true for annotating hosts and
services given the exploding number of embedded devices on
the Internet. In turn, Censys needs to operate transparently
and provide data back to the community. Third, the num-
ber of scans and annotations will both grow over time; our
architecture should scale linearly to handle this increased
load.

3.1 Internet-Wide Scanning
In the first step of data collection, we use ZMap [20] to

perform single-packet host discovery scans against the IPv4
address space. The hosts found by ZMap seed pluggable
application scanners, which perform a follow-up application-
layer handshake and produce structured JSON data describ-
ing a certain aspect of how a host is configured. Typically,
application scanners only perform a single handshake and
measure one aspect of how a service is configured. For exam-
ple, we perform separate horizontal scans and use different
pluggable scanners to measure how HTTPS hosts respond
to a typical TLS handshake, whether hosts support SSLv3,
and whether a host is vulnerable to the Heartbleed attack.

Pluggable Scanners. While we can use ZMap to per-
form host discovery for many protocols, every application
scanner requires protocol specific code and Censys’s long-
term success is dependent on easily adding new protocols.
In order to reduce the effort required to scan new protocols,
Censys handles the details of a scan and expects a minimally
featured application scanner. Specifically, Censys expects a
self-contained Linux executable that performs application-
layer handshakes with IP addresses input on stdin and
produces structured JSON output that describes how the
protocol is configured on stdout. Censys controls network
bandwidth by rate limiting the IP addresses provided to
scanners, splits scans across multiple scan workers using
ZMap’s built-in sharding [2], and guarantees that application
scanners do not scan networks that have requested exclusion
using ZMap’s blacklist.
In order to protect our infrastructure, we require that ap-

plication scanners operate without root privileges or kernel
modifications. Lastly, we encourage researchers to output
metadata about the scan in JSON form and to log errors in
a standard format, which enables Censys to confirm whether
a scan completed successfully. We hope that by requiring
minimal feature-set and allowing flexibility in language, we
not only reduce the effort required for our team to add addi-
tional protocols, but also encourage an external community
that develops new scanners.

Scheduling Scans. While it would be technically sim-
plest to measure every aspect of a protocol at once, this
frequently involves making multiple handshakes, which could

3

potentially inundate a host (e.g., an embedded device that
only allows one or two simultaneous connection). Instead,
we choose to perform scans independently, relying on our
data processing pipeline to aggregate the data from different
scans in order to reduce the load on individual hosts.
Internally, scans are referenced by the tuple (port, pro-

tocol, subprotocol, network destination), e.g., (443, https,
heartbleed, ipv4_shard1), and individual scan executions are
referenced by scan and timestamp. We currently maintain
a master scan schedule; we plan to automatically schedule
scans moving forward to better distribute network load.

3.2 ZGrab: Our Application Scanner
We are releasing a fast and extensible application scanner,

ZGrab, which meets the previous specifications and facili-
tates the rapid development of new types of scans. At this
time, ZGrab supports application handshakes for HTTP,
HTTP Proxy, HTTPS, SMTP(S), IMAP(S), POP3(S), FTP,
CWMP, SSH, and Modbus, as well as StartTLS, Heartbleed,
SSLv3, and specific cipher suite checks. On a dual-Xeon
E5-2640 (6-cores at 2.5GHz) system with an Intel X520 eth-
ernet adapter, ZGrab can complete HTTPS handshakes with
the full IPv4 address space in 6h20m, and a banner grab
and StartTLS connection with all publicly accessible SMTP
hosts in 3h9m, 1.86k and 1.32k hosts/second respectively.
ZGrab is implemented in Go, which we chose based on its

native concurrency support [36], safety compared to other
low-level languages, and its native cryptographic libraries [3].
The framework allows scanners to be defined as a serial chain
of network events. By default, ZGrab will only perform one
event per host, connect, which simply opens a TCP connec-
tion. Events can be as simple as reading or writing data,
or more advanced, such as initiating a TLS handshake. For
example, the HTTPS scanner is implemented as a connection
event and a TLS handshake event. To extend ZGrab to sup-
port scanning for StartTLS support among SMTP servers,
we added events to read the SMTP banner, write the SMTP
EHLO command, read the SMTP response, send the Start-
TLS command, read the response, and perform the TLS
handshake: a total 62LoC. The ZGrab framework handles
concurrent connections, as well as logging and generating
JSON documents that describe the connection.
All of the protocols in the initial Censys deployment use

ZGrab and we encourage other researchers to consider using it
as a starting point for developing other application scanners.
We are releasing and maintaining ZGrab as a standalone
open-source tool as part of the ZMap Project1. ZGrab can be
used independently of Censys and works in conjunction with
ZMap: ZMap quickly identifies hosts and ZGrab produces
structured data about each of those hosts.

3.3 Validation, Extraction, and Annotation
The raw, JSON data produced by pluggable application

scanners is collected by Censys, where it is validated, trans-
formed into a structured schema, and annotated with ad-
ditional metadata (e.g., device manufacturer and model),
before being streamed into our central database.

Validation. Censys validates scan data in two ways. First,
we extended ZMap to detect variances in network responses
during the host discovery stage. If the scan response rate
falls below a set threshold at any time, varies more than a
set amount during the scan, reaches a maximum number of
1ZGrab is available at https://github.com/zmap/zgrab.

@tag(port=443, proto="https", subproto="tls")
def dell_idrac(d):

subject = d.443.https.certificate.subject
if subject.ou == "Remote Access Group" \

and subject.org == "Dell Inc.":
return {"hw_manufacturer": "Dell Inc.",

"hw_model": "iDRAC",

Figure 3: Dell iDRAC Annotation—Censys sup-
ports community maintained annotations—simple Python
functions—that append additional metadata and tags to
records. Here, we show the tag for Dell iDRAC remote
management cards.

sendto failures, or if libpcap is unable to keep up and drops
a set number of packets, the scan automatically terminates
and is rescheduled. Second, Censys validates a scan at
its completion and rejects that scans where ZMap’s or the
application scanner’s response rates fall outside of a static
bound or deviate more than 10% from the median of the scans
that completed over the last two weeks; rejected scans are
manually inspected afterwards. These checks are primarily
in place in order to detect transient network failures, human
error in configuration, and coding errors.

Extraction. Application scanners output raw data about
every aspect of an application handshake in a format anal-
ogous with the network handshake. For example, in the
case of TLS, client and server randoms are output as part
of the Client and Server Hello messages. While this data
is needed for some research, many of these fields are not
helpful when searching for hosts or identifying devices, and
would cause unnecessary churn in our database. Similarly,
commonly searched fields are nested deep within network
protocol messages, making them hard to find. We save
and publish the raw application scanner output, but then
extract significant values and transform handshake data
into consistent, structured records that conform to a pub-
lished schema. We further output records in a determin-
istic manner during this process (i.e., the record has the
same cryptographic hash if no configuration changes have
occurred), which allows us to reduce load later by discarding
records that contain no changes. We refer to these deter-
ministic records that represent how a service is configured
as atoms.

Annotation. While the output from application scanners
can be used to identify a device model or version, these
details are not directly exposed by a scanner. Instead, they
frequently require a small amount of logic (e.g., running
a regular expression against the HTTP server header or
certificate subject). To facilitate adding this type of meta-
data, Censys allows researchers to define annotations—small
functions—that can inject additional metadata fields (e.g.,
device_module) or attach simple tags (e.g., IPMI for server
management cards) to hosts, websites, and certificates. An-
notations are defined as standalone Python functions that
are provided read-only access to the structured data that
Censys generates from each scan. We show an example an-
notation for labeling Dell iDRAC remote management cards
in Figure 3.
We encourage researchers (and end-users alike) to con-

tribute annotations for new types of devices and vulnerabili-
ties. We are hosting our repository of annotations, along with

4

https://github.com/zmap/zgrab

Database New Records (rec/sec) No Differences (rec/sec) Consecutive Day (rec/sec) Size on Disk
ZDb 58,340 136,664 110,678 1.60 GB
MongoDB 1,059 1,441 1,392 13.67 GB
Cassandra 501 511 506 3.40 GB

Table 1: NoSQL Engine Comparison—We compare ZDb against the two leading NoSQL engines [37], MongoDB and
Apache Cassandra by loading a full scan of FTP. We find that ZDb is 80× faster than MongoDB and 219× faster than
Cassandra when updating a consecutive day. For context, a single HTTP scan produces 2.4 K records/second.

our transformations and schemas as a standalone open source
project, ZTag, on GitHub (http://github.com/zmap/ztag).
We note that when ZTag is paired with ZMap and ZGrab,
researchers can independently reproduce the entire data pro-
cessing pipeline that Censys uses and independently generate
the same data (Figure 2).

3.4 Challenges in Aggregating Data
Scan workers act independently and statelessly; an indi-

vidual scan worker is not aware of other scan workers nor
does it have any prior knowledge of a host’s state. Therefore,
a worker does not know whether a scanned host has changed
or moved since a previous scan. Instead, workers stream all
structured data to a central database to be processed. This
vastly simplifies the development of application scanners and
facilitates linearly increasing computational power by adding
additional scan workers. However, this abstraction requires
a more complex data processing pipeline that can process
the incoming stream of data. For just the five largest pro-
tocols in our initial deployment (Table 2), this amounts to
processing at least 330m records per day—a sustained 3.8k
writes/second.

Our database needs are theoretically simple: we need to (1)
parse incoming records and update the relevant part of each
host record, maintain the current state of hosts, (2) stream
changes to downstream, user-facing, services, (3) efficiently
dump the database to JSON to produce daily snapshots. At
a small scale, this could be easily handled out-of-the-box by
one of many NoSQL database engines. However, we find
that popular NoSQL engines perform updates prohibitively
slowly given our workload (Table 1).
We tested the two most popular NoSQL engines [37], Mon-

goDB 2.6.7 and Apache Cassandra 2.1.2, under three sce-
narios: (1) importing a new protocol for the first time, (2)
re-importing the same dataset, and (3) loading two con-
secutive days of scans. These tests approximate the worst
case, best case, and typical daily use case for Censys. We
specifically loaded a banner grab scan of FTP (one of our
simplest protocols) from February 12 and 13, 2015, which
contained an average 14.5m records. Apache Cassandra con-
sistently updated at about 500 records/second for all cases.
MongoDB updated at an average 1,400 records/second when
updating between two consecutive days, but consistently
slowed as the database grew. At these rates, Cassandra
would require 37 hours to update a single HTTP scan on our
server; MongoDB would require 13 hours. MongoDB and
Cassandra further required 8.5× and 2.1× the disk space of
the raw data. We performed these experiments on an Intel
branded server with dual Xeon E5-2640 processors (12 cores
at 2.50GHz), 128GB of DDR3 memory, and a Samsung
850 Pro 1TB SSD drive. We ran MongoDB with w=0 write
concern, which provides acknowledgment from the server

that the request was received and could be processed, but
not that it has been flushed to disk.
While it is possible to horizontally scale both database

engines across a large number of servers, we observe that
our needs differ greatly from a typical OLTP database and
could likely be solved with a simple, custom database. Our
first observation is that the majority of updates contain
unchanged data (91.5% in the case of HTTPS; 88.5% for
HTTP) and can be safely discarded. While MongoDB and
Cassandra did not handle unchanged records significantly
faster than actual updates, we could quickly discard these
records. Second, if changed data is immediately streamed to
downstream user-facing services, we do not need to quickly
serve arbitrary reads. Instead, reads will only be necessary
as part of large batch jobs. Therefore, we do not need to
cache user data in memory in order to support fast queries.
Instead, we should focus on optimizing for quickly processing
incoming records and organizing the data to facilitate efficient
batch jobs. Last, updates are streamed from scan workers,
which are architected to be linearly scaled. If there are
expensive operations to be performed on every record, these
can be offloaded to the database client in order to reduce
load on the central database.
With these considerations in mind we developed ZDb,

which aggregates the records generated by scan workers,
maintains the current state of hosts on the IPv4 address
space, websites in the Alexa Top 1Million Sites, and curates
auxiliary collections of all X.509 certificates and public keys
we’ve encountered. ZDb is able to process upwards of 110K
records/second for a typical workload—a 219× speedup over
Cassandra and 80× speedup over MongoDB. We describe
ZDb’s architecture and our data processing pipeline in the
next section.

3.5 Censys Data Flow
After a scan worker finishes processing a host, it serializes

the annotated, structured data into a Google Protocol Buffer
message [22], which it sends to the central ZDb server along
with the SHA-1 fingerprint of the message and a key describ-
ing what was scanned. These messages are queued in memory
and processed by a pool of worker threads, which deserialize
and validate the outer record, and check whether the record
has changed since the last scan (using the attached SHA-1
fingerprint). If the record has changed, the new record is
written to disk, and enqueued in external Redis queues for
downstream services (e.g., the database of historical records,
the search index, and other institutions subscribed to a live
data feed). If the record has not changed since the latest
scan, we simply mark the record as having been seen in the
most recent scan. When the scan completes, we prune any
records that were not updated or marked as having been seen
in the scan. Analogous to the IPv4 database, we maintain a
collection of records for the Alexa Top 1Million domains, as

5

http://github.com/zmap/ztag

Port Protocol SubProtocol Port Open Full Handshake Raw Record Processed % Diff Database
(Hosts) (Hosts) Size (KB) Size (KB) 1 Day Size on Disk

80 HTTP GET / 77.3 M 66.8 M .69 (1.8) .32 (.096) 11.5% 10.9 GB
443 HTTPS TLS 47.1 M 33.3 M 3.7 (4.9) 4.5 (1.4) 8.5% 50.1 GB
443 HTTPS SSLv3 43.1 M 22.5 M 2.8 (3.9) .08 (.0001) 6.8% 1.5 GB
443 HTTPS Heartbleed 47.1 M 33.1 M 3.6 (4.8) 2.3 (.002) 4.4% 4.8 GB
7547 CWMP GET / 55.1 M 44.3 M .3 (.3) .34 (.09) 28.1% 6.5 GB
502 MODBUS Device ID 2.0 M 32 K .19 (.20) .10 (.08) 10.6% 0.0 GB
21 FTP Banner Grab 22.9 M 14.9 M .08 (.09) .33 (.31) 7.5% 9.0 GB
143 IMAP Banner Grab 7.9 M 4.9 M 2.8 (4.1) 2.2 (8.9) 3.3% 7.0 GB
993 IMAPS Banner Grab 6.9 M 4.3 M 6.6 (4.2) 4.9 (8.4) 2.0% 11.5 GB
110 POP3 Banner Grab 8.8 M 4.1 M 2.5 (3.9) 2.3 (.44) 4.4% 6.9 GB
995 POP3S Banner Grab 6.6 M 4.0 M 6.4 (4.1) 2.4 (.4) 1.9% 6.9 GB
25 SMTP Banner Grab 14.7 M 9.0 M 1.9 (3.6) 1.5 (1.2) 5.8% 8.9 GB
22 SSH RSA 14.3 M 14.3 M 1.0 (.2) .6 (.2) 13.8% 5.8 GB
53 DNS OpenResolver 12.4 M 8.4 M .05 (.001) .145 (0) 29.8% 0.7 GB
123 NTP Get Time 1.6 M 1.2 M .02 (.0006) .145 (0) 92.8% 0.1 GB
1900 UPnP Discovery 9.5 M 9.5 M .051 (.002) .10 (0.0) 37.2% 0.6 GB

Table 2: Scanned Protocols—We scan 16 protocols in our initial implementation. For each protocol and subprotocol we
scan, we show the average size and standard deviation for raw and transformed records, as well as the percent-change in
records across two days of scans. Most protocols have a less than a 15% turnover rate between consecutive days.

well as auxiliary collections of all seen X.509 certificates and
public keys.
Internally, data is stored on disk using RocksDB [21],

an embeddable key-value store optimized for flash storage.
RocksDB buffers writes to a small in-memory table and on-
disk journal, and, in another thread, flushes changes to a
log-structured merge-tree on disk. The records stored in
RocksDB consist of the serialized protobuf messages gen-
erated by the scan workers. We note that because data is
written to disk as a log-structured merge-tree, we maintain
a global ordering of all records, which we use to logically
group multiple records that describe a single host. Similarly,
records describing a single network are grouped together.
This allows us to efficiently generate daily snapshots of the
IPv4 address space by performing a single, linear pass of the
database, grouping together all records describing a single
host, and outputting a structured JSON document describing
all measured aspects of each host.
All of the functionality in ZDb could be achieved using

only RocksDB, but would require a disk read to process
every incoming record. To improve performance, we cache
the SHA-1 fingerprints of current records, along with whether
the record were seen in the latest scan using an in-memory
Judy Array. With this additional optimization, we no longer
need to make random reads from RocksDB during processing
and can process all incoming records that contain no changes
without touching disk. We then update when each record
was seen at the end of the scan during the prune process,
which already performs a linear pass of the records on disk.
With these optimizations, ZDb is able to process 58k records
per second in the worst case, 137k records/second in the best
case, and 111k records/second in the daily workload using
the same metrics we used to measure MongoDB and Apache
Cassandra.
We would be remiss not to mention that because records

are queued in memory before they are processed, and because
we cache which records have been seen in memory until a scan
finishes, ZDb would lose the data associated with a particular
scan if the server crashed (e.g., due to a kernel panic). While
this is non-optimal, we find this risk acceptable, because
a fresh scan can be completed in a matter of hours, which

would likely be similar to the amount of time needed to
investigate the crash, recover the database, and finish the
remainder of a scan. We take a similar approach to managing
failures during a scan. If a scan worker crashes, or if scan
validation fails for any reason, we start a new scan rather
than try to recover the previous scan.

4. EXPOSING DATA
To be successful, Censys needs to expose data back to

the community, which ranges from researchers who need
to quickly perform a simple query to those who want to
perform in-depth analysis on raw data. In order to meet
these disparate needs, we are exposing the data to researchers
through several interfaces, which offer varying degrees of
flexibility: (1) a web-based query and reporting interface,
(2) a programmatic REST API, (3) public Google BigQuery
tables, and (4) raw downloadable scan results. We further
plan to publish pre-defined dashboards that are accessible
to users outside of the research community. In this section,
we describe each of these interfaces in depth.

4.1 Search Interface
The primary interface for Censys is a search engine that

allows researchers to perform full-text searches and struc-
tured queries against the most recent data for IPv4 hosts,
the Alexa Top 1Million websites, and known certificates.
For example, a researcher can find all hosts currently vul-
nerable to Heartbleed in the United States with the query:
443.https.heartbleed.vulnerable: True
AND location.country_code: US. This query executes in
approximately 250ms and users are presented with the hosts
that meet the criteria, along with basic metadata, which
includes the breakdown of the top ASes, countries, and tags.
Users can view the details of any host, as well as generate
statistical reports.

Search Syntax. The search interface supports basic
predicate logic (e.g. (location.country_code: US OR
location.country_code: CA) AND 80.http.server:
Apache), ranges (e.g., 80.http.http_status.code > 200),
wildcards (e.g., 443.https.certificate.certificate.
issuer.*:GoDaddy*) and regular expressions (e.g., 25.smtp.

6

Interface Query Time
Web 80.http.get.headers.server:* 218 ms
Web 443.https.tls.signature.valid:true AND

443.https.tls.version.name:SSLv3
356 ms

API 25.smtp.banner.banner:gsmtp 82 ms
API ip:1.2.3.4 12 ms
Report 443.https.tls.certificate.issuer_dn 417 ms
Report 502.modbus.device_id.product_name 11 ms

Table 3: Censys Response Times—Censys can be used
to search records, and to create aggregations over fields in
the search results. Here, we show example searches and
aggregations along with their execution times. All of the
queries completed in under 500 ms.

banner: \Apache.*\). Users can perform simple full-text
searches as well as query any structured field generated
during the scan process, including user annotations and
system-maintained metadata (e.g., location and network
topology).

Viewing Individual Records. Users can view the de-
tails any host, certificate, or domain returned by a query.
This includes a user-friendly view of how each service is con-
figured, the most recent raw data describing the host, user-
provided metadata and tags, and historical scan data. We
similarly display geographic location, routing, and WHOIS
information.

Dynamic Reports. Once a query completes, users can
generate reports on the breakdown of any field present on the
resulting datasets. For example, users can view the break-
down of server chosen cipher suites for IPv4 HTTPS hosts
with browser-trusted certificates by performing the query
443.https.tls.validation.browser_trusted: True and
generating a report on 443.https.cipher_suite.name.

Backend. The search interface and reports are powered
by Elasticsearch [6], an open-source project that front-ends
Apache Lucene [4]. We maintain three indexes within Elas-
ticsearch: IPv4 hosts, Alexa Top 1 Million websites, and
all known certificates; ZDb updates the three indexes real
time. All updates also appended to a Google Cloud Data-
store collection, which is used to serve the history of each
host. Our web front-end is implemented in Python using
the Pylons Pyramid Framework, and is hosted on Google
App Engine. We plan to rate-limit the web interface, us-
ing session-based token buckets, in order to prevent screen
scraping and encourage developers to use the REST API we
describe in the next section for programmatic access. We
present the response time for sample queries in Table 3.

4.2 Programmatic Access
Censys has a programmatic API that provides equivalent

functionality as the search interface, but presents JSON re-
sults and follows the semantics of a REST API. For example,
researchers can get the history of an IPv4 host by doing a
GET request for https://censys.io/api/ipv4/8.8.8.8/history.
To prevent abuse, we require users to use a key, but are
happy to provide these to researchers.

4.3 SQL Interface
We recognize that not all research questions can be an-

swered through the search interface we described. This is
particularly true for historical queries, because we only ex-
pose the most recent data. To support more complex queries,

we are exposing Google BigQuery tables that contain the
daily ZDb snapshots of the IPv4 address space and Alexa
Top 1 Million Domains, along with our auxiliary collection
of certificates and public keys. Google BigQuery is a Dremel-
backed cloud database engine designed for performing large
analytical queries. Queries require 10–20 seconds to exe-
cute, but allow a full SQL syntax and are not restricted
to specific indexes. Authenticated researchers can perform
queries through the Censys web interface, or access the tables
directly using their own Google Cloud Accounts.

4.4 Raw Data
Lastly, we are publishing all of the raw data from our

scans, along with our curated ZDb snapshots of the IPv4
address space, Alexa Top 1 Million websites, and known
certificates. We will be posting these as structured JSON
documents, along with data definitions, and schemas for com-
mon databases at censys.io/data. We previously posted scan
data on https://scans.io, a generic scan data repository that
our team hosts. We will continue to maintain the scans.io
interface, provide continued access to our historical datasets,
and allow researchers to upload other data. However, we
will no longer post our regular scans to https://scans.io,
but rather encourage users to download these directly from
Censys’s web interface.

4.5 Protocol Dashboards
While Censys’s primary goal is to answer researchers’ spe-

cific queries, the backend similarly supports the types of
queries needed to generate pre-determined reports and dash-
boards. We plan to publish dashboards on Censys’ website,
which present various perspectives of how protocols are de-
ployed in practice. At initial release, we will be releasing a
Global HTTPS Dashboard that presents how well HTTPS
has been deployed in practice, an Alexa HTTPS Deploy-
ment Dashboard that shows historical trends in HTTPS de-
ployment and which high-ranking sites have not deployed
HTTPS, and dashboards for each of the recent HTTPS vul-
nerabilities, which will supersede the Heartbleed Bug Health
Report, POODLE Attack and SSLv3 Deployment, Tracking
the FREAK Attack, and Who is affected by Logjam? sites.
Initially, dashboards will be statically defined. However, we
encourage researchers to contribute reports at the completion
of research projects, and moving forward we hope to allow
everyone to dynamically define new reports.

5. INITIAL DEPLOYMENT
We are releasing Censys with the sixteen protocols listed

in Table 2, which we are scanning from the University of
Michigan.

Scanning. We originally scheduled all protocols to run on
a daily basis, but quickly reduced scan speed and frequency
due a non-negligible uptick in complaints and exclusion re-
quests. Instead, we have switched to scheduling scans based
on protocol turnover. We specifically scan HTTP, HTTPS,
and CWMP on a daily basis; SSH, Modbus, FTP, DNS,
NTP, UPnP, SMTP, and SSH biweekly; and IMAP, IMAPS,
POP3, POP3, POP3S, HTTPS/SSLv3, and HTTPS/Heart-
bleed weekly. All scans are performed over a 24 hour hour
period. We plan to further fine tune this schedule based
on which protocols are frequently searched and downloaded
after public release, and will post updated schedules on the
web interface.

7

https://censys.io/api/ipv4/8.8.8.8/history
censys.io/data
https://scans.io
https://scans.io

Backend. During initial testing, when we scanned ev-
ery protocol daily, we were able to consistently complete
all sixteen scans from a pool of 12 scan workers and ZDb
comfortably handled upwards of 40 full-speed scans on a sin-
gle host—an Intel branded server with with two Intel Xeon
E5-2640 (6 cores at 2.50GHz) processors, 192GB of DDR3
memory, and RAID 1+0 with four Intel 850 Pro 1TB SSD
drives. Our scan workers are Dell PowerEdge 1950s, with a
Quad-Core Intel Xeon X5460 at 3.16Ghz, 16 GB of memory,
and a local 1TB 7200 RPM SATA drive.

Frontend. Our front-end is powered by a number of
components. The web interface itself is implemented as a
Python Pyramid project, served through Google App Engine,
our search backend is powered by Elasticsearch and Apache
Lucene, historical data is stored in Google Datastore, and his-
torical and advanced queries utilize Google BigQuery. With
the exception of Elasticsearch, these services will autoscale
based on load. During private testing, we were comfortably
able to serve Elasticsearch requests for a small number of
internal users from a single server (2 x Intel Xeon E5-2640 (6
cores at 2.50GHz) processors, 192 GB of DDR3 memory, and
RAID 1+0 with four Intel 850 Pro 1 TB SSD drives). How-
ever, it remains unclear exactly what Censys’s load will look
like after we launch publicly. Our initial public Elasticsearch
deployment runs on Google Compute Engine and consists
of six backend data nodes, each with 52GB of memory, 8
VCPUs, and 500GB solid state storage, and two front-end
nodes. We can add additional nodes to the cluster as load
dictates.

6. APPLICATIONS
Exposing scan data to new sets of researchers, who do not

otherwise have access to scanning methodologies was one
of the primary motivations for developing Censys. In this
section, we show how Censys can be used to easily answer
frequently asked Internet measurement questions, as well as
questions from recent security studies.

6.1 Industrial Control Systems
SCADA (Supervisory control and data acquisition) sys-

tems provide a communication channel for computer systems
to control industrial equipment, such as motors, generators,
and physical sensors. SCADA-enabled devices are used ex-
tensively in industrial and infrastructure-critical systems,
ranging from factories and power plants to HVAC systems
and water treatment facilities. Attacks on these systems
are particularly dangerous, because SCADA devices bridge
the gap from virtual to physical and have devastating con-
sequences. In one recent example, the compromise of a
blast furnace control system resulted “massive damage” to a
German steel mill in 2014 [39].
One of the primary SCADA protocols, Modbus, was origi-

nally designed for local communication over a serial connec-
tion, but has since been extended to operate over networks
and the Internet [32]. The protocol contains no authentica-
tion, and as a result, publicly accessible Modbus devices are
an inherent security risk. To show how Censys can be used
characterize these devices, we implemented annotations to
identify different types of Modbus devices. With 42 annota-
tions, we categorized 92% of Modbus devices that responded
to a device identification request. These annotations contain
device classification, hardware manufacturer, software name,
and version. We queried Censys for modbus devices and

Country Modus Devices
United States 4723 24.7%
Spain 1,448 7.58%
Italy 1,220 6.39%
France 1,149 6.02%
Turkey 884 4.63%
Canada 822 4.30%
Denmark 732 3.83%
Taiwan 682 3.57%
Europe 615 3.22%
Sweden 567 2.97%
Total 12,842 67.23%

Table 4: Top Countries with Modbus Devices—We
identified Modbus hosts in 117 countries, with the top 10
countries accounting for 67% of the total costs, and nearly
one-quarter of all Modbus hosts we identifed are located in
the United States.

Device Type Count
Modbus Ethernet Gateway 1,440
Programmable Logic Controller 1,054
Solar Panel Controller 635
Water Flow Controller 388
Power Monitor/Controller 158
Touchscreen System Controller 79
SCADA Processor/Controller 99
Environment/Temperature Sensor 10
Cinema Controller 5
Generic Modbus Device 28,750

Table 5: Modbus Devices—We used Censys to categorize
publicly available industrial control systems that support the
Modbus protocol.

Vulnerability Alexa IPv4 IPv4 Trusted
Heartbleed 1.16% 0.96% 0.19%
SSLv3 Support 46.0% 55.8% 34.7%
SSLv3 Only 0.05% 2.9% 0.07%

Table 6: Heartbleed and SSLv3—We show a break-
downs for the Heartbleed vulnerability and SSLv3 support
for HTTPS hosts in the IPv4 address space and the Alexa
Top 1 Million.

Expires Count %SHA-1 % Total Chrome
2015 6.86 M 60.2% 46.0% Secure
2016 2.84 M 25.0% 19.0% Warning
2017+ 1.69 M 14.8% 11.3% Insecure

Table 7: SHA-1 Prevalence—Chrome is beginning to
mark sites with SHA-1 signed certificates as insecure. We
used Censys to measure the fraction of trusted sites with
SHA-1 certificates and how they appear in Chrome.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

10/18
11/01

11/15
11/29

12/13

Pe
rc

en
ta

ge
 o

f S
ite

s
th

at
 S

up
po

rt
SS

Lv
3

Figure 4: SSLv3 Deprecation—Censys tracks both the
IPv4 and Alexa Top 1 Million websites. We track the depre-
cation of SSLv3 of both after the POODLE announcement
using Censys. We find that the support for SSLv3 has
dropped from 96.9% to 46.0% between October 2014 and
February 2015 for the Top 1 Million Websites.

 0
 10
 20
 30
 40
 50
 60
 70
 80

rsa_with_rc4_128_sha

rsa_with_aes_256

_cbc_sha
ecdhe_rsa_with_aes_128

_gcm_sha256
rsa_with_aes_128

_cbc_sha
ecdhe_rsa_with_aes_256

_cbc_sha
rsa_with_aes_128

_gcm_sha256
ecdhe_rsa_with

_rc4_128_sha
rsa_with_3des

_ede_cbc_sha

Pe
rc

en
ta

ge
 o

f H
os

ts

All Hosts IPv4
Trusted Hosts IPv4
Alexa Top 1 Million

Figure 5: HTTPS Cipher Suites—We show the break-
down of cipher suites chosen by all IPv4 hosts, hosts with
browser trusted certificates, and the Alexa top million do-
mains using numbers returned by Censys’s web interface.

aggregated hosts based on type, which identified 32,622 hosts
and completed in 21 ms. We show the breakdown of device
types in Table 5.
By querying Censys, we find that Internet-connected Mod-

bus devices are pervasive, despite the total lack of security in
the protocol. In situations where remote access is required,
good security practice dictates that Modbus devices should
be access-controlled through the use of a firewall or VPN [32].
Unfortunately, Censys identified many of the publicly acces-
sible Modbus devices as network-enabled SCADA processors
and gateways, capable of forwarding instructions to and
controlling other networks of SCADA devices which might
not be directly connected to the Internet. Censys located
devices spread over 1,880 ASes and 111 countries, with the
top countries accounting for 77% devices (Table 4).

6.2 Heartbleed, Poodle, and SSLv3
The security community watched two catastrophic TLS

vulnerabilities unfold in 2014: Heartbleed [12] and Poo-
dle [33]. Heartbleed was caused by an implementation error
in OpenSSL that resulted in servers publicly leaking private
data, including cryptographic keys and login credentials. Poo-
dle was caused by fundamental flaw in the SSLv3 protocol,
which allowed attackers to man-in-the-middle connections.
Both of these vulnerabilities garnered both widespread re-
search [15, 16, 19] and media attention. The fundamental
question of “What hosts are still vulnerable?” surrounded
the disclosures, and Internet-wide scanning was the key tool
used for both understanding the impact of the vulnerabilities
and facilitating Internet-wide notifications. Unfortunately,
data describing the susceptibility of the Internet stagnated
after initial publications. Despite this, the question of who
is vulnerable remains important.
To determine what hosts with browser trusted certificates

remained vulnerable to Heartbleed, we queried Censys for
443.https.certificate .signature.valid:true and aggre-
gated the 443.https.heartbleed_ vulnerable field. Simi-
larly, to determine what percentage of hosts only supported
SSLv3 we queried for HTTPS hosts and aggregated the 443.
https.tls_version.name field, which completed in 229 ms.
We provide breakdowns of the current state of Heartbleed
and SSLv3 in Table 6.
Despite Heartbleed being disclosed over a year ago, over

1% of the Alexa Top 1M domains remain vulnerable. Ad-
ditionally, 46% of HTTPS-enabled Alexa Top 1M sites still
support SSLv3, down from 97% at the disclosure of POO-
DLE four months ago [16]. All of the data used to make
these measurements about the current state of the Internet
can be publicly queried on Censys’s web interface.
We acknowledge that not all vulnerabilities can imme-

diately be detected upon disclosure without some level of
code modification. However, the data processing and appli-
cation scanner framework in Censys allows researchers to
quickly respond to vulnerabilities and to easily develop a
custom scan module, if necessary. For example, in the case of
Heartbleed, a minor modification to ZGrab to send a custom
Heartbeat packet was all that was needed in order to stream
Heartbleed scan data into Censys. Realistically, automated
measurement in Censys can be started within a few hours of
vulnerability disclosure. As the protocol coverage of Censys
increases, we except the need for custom scan modules will
further decrease. In the case of POODLE, FREAK, and
Logjam, measurement of supported TLS versions and cipher
suites would have been sufficient in detecting vulnerability
trends immediately at the time of disclosure.

6.3 Institutional Attack Surface
Managing large, publicly accessible networks is an in-

volved and complicated process. Censys can be used by
organizations to measure their external-facing attack surface.
Network-connected devices can be difficult to keep track
of, and users may mistakenly open up devices and services
intended to be private. Censys supports queries based on
network blocks and ASes, which an organization can use
to easily export all of the data that Censys has gathered
about their publicly-accessible services. This data can be
used to identify mistakenly exposed or vulnerable devices,
as well as identify devices that may have been overlooked
when patching software.

9

Unfortunately, these mistakenly exposed devices might not
only present a security risk to the institution hosting them,
but also to the entire Internet. For example, misconfigured
public NTP and DNS resolvers are the major cause of the new
trend in amplification DDoS attacks [14,27]. Amplification
attacks can be globally prevented by eliminating publicly
accessible open resolvers and NTP servers. As a result,
several initiatives such as The Open Resolver Project [31] and
The Open NTP Project [34] provide free scanning services
on networks of up to 1,024 hosts for network administrators
to use to identify misconfigured or publicly accessible devices
that could be leveraged for amplification attacks. Censys
removes the need for service-specific and vulnerability-specific
scanning initiatives. Censys provides similar services as both
of these initiatives, and is both real-time and Internet-wide.

6.4 Deprecating SHA-1
The Chrome Security team is spearheading an effort to

deprecate HTTPS certificates signed using SHA-1, citing the
decreasing cost of collision attacks [35]. Chrome now shows
certificates signed with SHA-1 and expiring before 2016 as
secure, displays a warning for those expiring between 2016
and 2017, and rejects SHA-1 signed certificates expiring in
2017 or later as insecure.
We used Censys to characterize the current prevalence

of SHA-1 signed certificates for HTTPS hosts with browser
trusted certificates. Specifically, we queried Censys to find all
browser-trusted certificates expiring in 2015, 2016, and 2017
or later (e.g. 443.https.certificate.signature.valid:
true AND 443.https.certificate.validity.end:[2017 TO
*]), and used Censys’s aggregation feature to bucket results
by signature algorithm. We find that 76.3% of trusted IPv4
hosts currently use a SHA-1 signature and show the break-
down of SHA-1 certificates and their status in Chrome in
Table 7.

6.5 Cipher Suites
The security of the TLS protocol fundamentally relies on

the use of strong cipher suites. However, servers and clients of-
ten have to make a tradeoff between level of security and com-
patibility. When performing a TLS handshake, ZGrab offers
the cipher suites implemented by the Golang TLS library and
logs the chosen cipher suite, which is then exported to Censys.
Using Censys, we generated the distribution of selected ci-
pher suites by all HTTPS hosts by querying for HTTPS hosts
and aggregating on the 443.https.cipher_suite.name field,
which Censys completed in 212ms. We show these distri-
butions in Figure 5. Even from these basic distributions,
we can gain insights into cipher suite selection in the wild.
The Alexa Top 1M domains prefer ECDHE key exchange,
whereas IPv4 prefers RSA key exchange. Hosts without
trusted certificates are much more likely to use RC4 rather
than AES. We can also see that overall not only are RC4
and AES preferred to 3DES, but that 3DES ciphers are only
chosen by less than 1% of hosts.

7. RELATED WORK
There have been a large number of research studies over

the past several years that have been based on Internet-wide
scanning [1, 7–11,13,14,18,19,24–29,38], which encouraged
us to develop Censys.
Censys further enables these types of studies, and low-

ers the barriers to entry for utilizing Internet-wide scan

University Protocol Shodan Censys
Michigan FTP 38 255
(141.212.0.0/16) HTTP 274 987

HTTPS 53 337
Iowa FTP 12 98
(128.255.0.0/16) HTTP 415 1,304

HTTPS 30 662
Berkeley FTP 84 582
(128.32.0.0/16) HTTP 602 1,871

HTTPS 158 1,188

Table 8: Shodan Comparison—We compared the number
of hosts returned by Shodan and Censys for FTP, HTTP,
and HTTPS on three different /16 network blocks, each
belonging to a different public U.S. university. We find that,
on average, Censys found 600% more FTP hosts, 220% more
HTTP hosts, and 800% more HTTPS hosts.

data. Similarly, there have been several scanners designed
for scanning the IPv4 address space, notably ZMap [20] and
Masscan [23]. While we introduce ZGrab, an application
scanner, Censys itself is not a new Internet scanner. Rather,
it builds upon ZMap to provide a higher level interface to
scan data.

7.1 Scan Driven Search Engines
The closest work to Censys is Shodan, which provides

a text search of banners, primarily on FTP, SSH, Telnet,
and HTTP [30]. Banners are searchable as plaintext, and
searches can be filtered by CIDR range and location. While
Censys and Shodan seek to to fulfill similar goals, they take
different approaches, offer differing functionality, and fulfill
different needs.
Unfortunately, it is unclear how Shodan performs banner

grabs, from where, and how frequently. In order to compare
Shodan’s coverage with Censys, we compared the result sets
for three academic institutions on three shared protocols:
FTP, HTTP, and HTTPS. Shodan does not expire results,
which makes it difficult to compare with our most recent
scans. However, Shodan does include a last-seen-at times-
tamp on records and we compare Censys against any hosts
Shodan has seen in the past month. In comparison, Censys
only presents records from the latest scan. This will inflate
the number of results presented by Shodan, given that hosts
frequently move, but allows us to approximate the differences
between the two services. On average, Censys found 598%
more FTP hosts, 222% more HTTP hosts, and 808% more
HTTPS hosts than Shodan. Spot-checks confirmed that
these additional hosts were not false, positives, but rather
hosts not recently found, or were missing from Shodan.
In order to measure how frequently Shodan scans the

Internet, we provisioned a publicly available FTP server with
a unique banner, and queried the Shodan search API every
10 minutes for the banner. Despite this, Shodan did not
respond with our FTP host in its result set until 25 days
after provisioning our server. In comparison, the host was
present in Censys’s public interface in under 48 hours. We
also note that during this experiment, Shodan timed out for
2% of queries and returned an Invalid Query error for 1%.

Shodan’s search interface and API further differ from Cen-
sys. In comparison to Censys’s support for query statements
on parsed out fields, Shodan only allows simple full-text

10

searches against the raw text of a host’s banner. Further,
Shodan limits anonymous users to 10 hosts per search and
registered users to 50 hosts per search. All API calls re-
quire creating an account, and access to larger result sets
and HTTPS requires purchasing an account (a minimum
50 USD). Any results from the API and results in the web
interface beyond the 50 hosts per search require purchasing
“query credits”. Credits can be purchased at $2.50/credit,
or $500/month for unlimited credits, and allow viewing. In
comparison, Censys publicly provides a fully featured query
interface to parsed application handshake data and it pro-
vides API results in paginated sets of 5k hosts. We further
post all raw and parsed data from Censys on the Internet-
Wide Scan Data Repository at https://scans.io.

While Shodan has frequently been used to show the exis-
tence of vulnerable systems, its lack of timeliness, coverage,
and transparency prevents its use as a trusted tool by re-
searchers. In contrast, Censys is architected to be a fully
transparent, community-driven project. All of the code is
available on GitHub, all results are publicly available, and
we support a query syntax and API tailored to researchers.

8. CONCLUSION
Until now, there remained a gap between the technical

ability to perform host discovery scans on the IPv4 address
space and answering meaningful research questions. In this
paper, we introduced Censys, a public query engine and data
processing facility backed by data collected from ongoing
Internet-wide scans. Designed to help researchers answer
security related questions, Censys collects structured data
about the IPv4 address space and supports querying fields
derived from scans and generating statistical reports. We
explored several security applications of Censys and showed
how Censys can be used to easily answer questions from
recent studies. We hope that Censys enables researchers to
easily answer questions about the Internet that previously
required extensive effort, while simultaneously reducing du-
plicate effort and total scan traffic.

Acknowledgments
The authors thank Ben Burgess, Alishah Chator, Henry
Fanson, and Harsha Gotur for their help building Censys.
We thank the exceptional sysadmins at the University of
Michigan for their help and support throughout this project,
including Chris Brenner, Kevin Cheek, Laura Fink, Dan
Maletta, Jeff Richardson, Donald Welch, Don Winsor, and
others from ITS, CAEN, and DCO. We are extremely grate-
ful to Elie Bursztein and the Google Anti-abuse team for
their support and advice, without whose help this project
would not have been possible. We also thank Brad Campbell,
Aleksander Durumeric, James Kasten, Kyle Lady, Adam
Langley, HD Moore, Pat Pannuto, Paul Pearce, Niels Provos,
Mark Schloesser, Eric Wustrow, our anonymous reviewers for
valuable feedback, and the many contributors to the ZMap
and ZGrab open source projects. This material is based
upon work supported by the National Science Foundation un-
der grants CNS-1111699, CNS-1255153, CNS-1345254, CNS-
1409505, CNS-1409758, and CNS-1518741, by the Google
Ph.D. Fellowship in Computer Security, by the Morris Well-
man Faculty Development Assistant Professorship, and by
an Alfred P. Sloan Foundation Research Fellowship.

9. REFERENCES
[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,

M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect forward
secrecy: How Diffie-Hellman fails in practice. In 22nd ACM
Conference on Computer and Communications Security,
Oct. 2015.

[2] D. Adrian, Z. Durumeric, G. Singh, and J. A. Halderman.
Zippier ZMap: Internet-wide scanning at 10Gbps. In 8th
USENIX Workshop on Offensive Technologies, Aug. 2014.

[3] S. Ajmani, B. Fitzpatrick, A. Gerrand, R. Griesemer,
A. Langley, R. Pike, D. Symonds, N. Tao, and I. L. Taylor.
A conversation with the Go team. Golang blog, June 2013.
http://blog.golang.org/a-conversation-with-the-go-team.

[4] Apache. Lucene. https://lucene.apache.org.
[5] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. The

Menlo report. IEEE Security and Privacy, 10(2), Mar. 2012.
[6] S. Banon. Elasticsearch, 2013. https://www.elastic.co.
[7] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,

C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K.
Zinzindohoue. A messy state of the union: Taming the
composite state machines of TLS. In 36th IEEE Symposium
on Security and Privacy, May 2015.

[8] A. Bonkoski, R. Bielawski, and J. A. Halderman.
Illuminating the security issues surrounding lights-out server
management. In 8th USENIX Workshop on Offensive
Technologies, Aug. 2013.

[9] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore,
M. Naehrig, and E. Wustrow. Elliptic curve cryptography in
practice. In 18th International Conference on Financial
Cryptography and Data Security, Mar. 2014.

[10] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and
V. Shmatikov. Using Frankencerts for automated adversarial
testing of certificate validation in SSL/TLS implementations.
In 35th IEEE Symposium on Security and Privacy, May
2014.

[11] S. Checkoway, M. Fredrikson, R. Niederhagen,
A. Everspaugh, M. Green, T. Lange, T. Ristenpart, D. J.
Bernstein, J. Maskiewicz, and H. Shacham. On the practical
exploitability of Dual EC in TLS implementations. In 23rd
USENIX Security Symposium, Aug. 2014.

[12] Codenomicon. Heartbleed, Apr. 2014.
http://heartbleed.com.

[13] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and
S. Antipolis. A large scale analysis of the security of
embedded firmwares. In 23rd USENIX Security Symposium,
Aug. 2014.

[14] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos,
M. Bailey, and M. Karir. Taming the 800 pound gorilla: The
rise and decline of NTP DDoS attacks. In 14th ACM
Internet Measurement Conference, Nov. 2014.

[15] Z. Durumeric, D. Adrian, M. Bailey, and J. A. Halderman.
Heartbleed bug health report, Apr. 2014.
https://zmap.io/heartbleed.

[16] Z. Durumeric, D. Adrian, J. Kasten, D. Springall, M. Bailey,
and J. A. Halderman. POODLE attack and SSLv3
deployment, Oct. 2014. https://poodle.io.

[17] Z. Durumeric, M. Bailey, and J. A. Halderman. An
Internet-wide view of Internet-wide scanning. In 23rd
USENIX Security Symposium, Aug. 2014.

[18] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman.
Analysis of the HTTPS certificate ecosystem. In 13th ACM
Internet Measurement Conference, Oct. 2013.

[19] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, and
J. A. Halderman. The Matter of Heartbleed. In 14th ACM
Internet Measurement Conference, Nov. 2014.

[20] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap:
Fast Internet-wide scanning and its security applications. In
22nd USENIX Security Symposium, Aug. 2013.

11

https://scans.io
http://blog.golang.org/a-conversation-with-the-go-team
https://lucene.apache.org
https://www.elastic.co
http://heartbleed.com
https://zmap.io/heartbleed
https://poodle.io

[21] Facebook. RocksDB: A persistent key-value store for fast
storage environments. http://rocksdb.org.

[22] Google. Protocol buffers.
https://github.com/google/protobuf.

[23] R. Graham. Masscan: The entire Internet in 3 minutes.
Errata Security blog, Sept. 2013. http://blog.erratasec.com/
2013/09/masscan-entire-internet-in-3-minutes.html.

[24] X. Gu and X. Gu. On the detection of fake certificates via
attribute correlation. Entropy, 17(6), 2015.

[25] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. Mining your Ps and Qs: Detection of
widespread weak keys in network devices. In 21st USENIX
Security Symposium, Aug. 2012.

[26] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-air:
An empirical study of strict transport security and key
pinning. In 2015 Network and Distributed System Security
Symposium, Feb. 2015.

[27] M. Kührer, T. Hupperich, C. Rossow, and T. Holz. Exit
from hell? Reducing the impact of amplification DDoS
attacks. In 23rd USENIX Security Symposium, Aug. 2014.

[28] Y. Liu, A. Sarabi, J. Zhang, P. Naghizadeh, M. Karir,
M. Bailey, and M. Liu. Cloudy with a chance of breach:
Forecasting cyber security incidents. In 24th USENIX
Security Symposium, Aug. 2015.

[29] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and
V. Paxson. When governments hack opponents: A look at
actors and technology. In 23rd USENIX Security
Symposium, Aug. 2014.

[30] J. Matherly. Shodan FAQ.
http://www.shodanhq.com/help/faq.

[31] J. Mauch. Open resolver project.
http://openresolverproject.org.

[32] Modbus IDA. MODBUS TCP implementation guide, Oct.
2006. http://www.modbus.org/docs/
Modbus_Messaging_Implementation_Guide_V1_0b.pdf.

[33] B. Moller, T. Duong, and K. Kotowicz. This POODLE bites:
Exploiting the SSL 3.0 fallback, Sept. 2014.
https://www.openssl.org/~bodo/ssl-poodle.pdf.

[34] Network Time Foundation. Open NTP project.
http://openntpproject.org.

[35] C. Palmer and R. Sleevi. Gradually sunsetting SHA-1.
Google Online Security Blog.
http://googleonlinesecurity.blogspot.com/2014/09/
gradually-sunsetting-sha-1.html.

[36] R. Pike. Concurrency is not parallelism. In Heroku Waza,
Jan. 2012. http://talks.golang.org/2012/waza.slide.

[37] Solid IT. DB-Engines ranking.
http://db-engines.com/en/ranking.

[38] E. Wustrow, C. Swanson, and J. A. Halderman. TapDance:
End-to-middle anticensorship without flow blocking. In 23rd
USENIX Security Symposium, Aug. 2014.

[39] K. Zetter. A cyberattack has caused confirmed physical
damage for the second time ever, Jan. 2015.
http://www.wired.com/2015/01/
german-steel-mill-hack-destruction.

12

http://rocksdb.org
https://github.com/google/protobuf
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://blog.erratasec.com/2013/09/masscan-entire-internet-in-3-minutes.html
http://www.shodanhq.com/help/faq
http://openresolverproject.org
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://openntpproject.org
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://googleonlinesecurity.blogspot.com/2014/09/gradually-sunsetting-sha-1.html
http://talks.golang.org/2012/waza.slide
http://db-engines.com/en/ranking
http://www.wired.com/2015/01/german-steel-mill-hack-destruction
http://www.wired.com/2015/01/german-steel-mill-hack-destruction

	Introduction
	Good Internet Citizenship
	Collecting Data
	Internet-Wide Scanning
	ZGrab: Our Application Scanner
	Validation, Extraction, and Annotation
	Challenges in Aggregating Data
	Censys Data Flow

	Exposing Data
	Search Interface
	Programmatic Access
	SQL Interface
	Raw Data
	Protocol Dashboards

	Initial Deployment
	Applications
	Industrial Control Systems
	Heartbleed, Poodle, and SSLv3
	Institutional Attack Surface
	Deprecating SHA-1
	Cipher Suites

	Related Work
	Scan Driven Search Engines

	Conclusion
	References

